메뉴 건너뛰기




Volumn , Issue , 2011, Pages 623-630

Separating the wheat from the chaff: On feature selection and feature importance in regression random forests and symbolic regression

Author keywords

feature selection; genetic programming; random forests; symbolic regression; variable importance; variable selection

Indexed keywords

HIGH DIMENSIONAL DATA; OPEN PROBLEMS; RANDOM FORESTS; SYMBOLIC REGRESSION; TEST PROBLEM; VARIABLE IMPORTANCE; VARIABLE SELECTION;

EID: 80051920124     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2001858.2002059     Document Type: Conference Paper
Times cited : (42)

References (25)
  • 1
    • 39849102639 scopus 로고    scopus 로고
    • Simultaneous regression shrinkage, variable selection, and supervised clustering of predictors with oscar
    • Mar.
    • H. D. Bondell and B. J. Reich. Simultaneous regression shrinkage, variable selection, and supervised clustering of predictors with oscar. Biometrics, 64:115-123, Mar. 2008.
    • (2008) Biometrics , vol.64 , pp. 115-123
    • Bondell, H.D.1    Reich, B.J.2
  • 2
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • L. Breiman. Bagging predictors. Machine Learning, 24:123-140, August 1996. (Pubitemid 126724382)
    • (1996) Machine Learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 3
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • 10.1023/A:1010933404324
    • L. Breiman. Random forests. Machine Learning, 45:5-32, 2001. 10.1023/A:1010933404324.
    • (2001) Machine Learning , vol.45 , pp. 5-32
    • Breiman, L.1
  • 4
    • 79955783438 scopus 로고    scopus 로고
    • Evolved Analytics LLC. Evolved Analytics LLC
    • Evolved Analytics LLC. DataModeler Release 1.0. Evolved Analytics LLC, 2010.
    • (2010) DataModeler Release 1.0
  • 7
    • 70450064693 scopus 로고    scopus 로고
    • Variable importance assessment in regression: Linear regression versus random forest
    • Nov.
    • U. Grömping. Variable importance assessment in regression: Linear regression versus random forest. The American Statistician, 64:308-319, Nov. 2009.
    • (2009) The American Statistician , vol.64 , pp. 308-319
    • Grömping, U.1
  • 8
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • March
    • I. Guyon and A. Elisseeff. An introduction to variable and feature selection. J. Mach. Learn. Res., 3:1157-1182, March 2003.
    • (2003) J. Mach. Learn. Res. , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 9
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • DOI 10.1023/A:1012487302797
    • I. Guyon, J. Weston, S. Barnhill, and V. Vapnik. Gene selection for cancer classification using support vector machines. Machine Learning, 46:389-422, 2002. (Pubitemid 34129977)
    • (2002) Machine Learning , vol.46 , Issue.1-3 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.4
  • 10
    • 80051933264 scopus 로고    scopus 로고
    • Human Development Reports. http://www.hdr.undp.org/.
  • 11
    • 80051937753 scopus 로고    scopus 로고
    • Human Development Research Papers. http://hdr.undp.org/en/reports/global/ hdr2010/papers/.
  • 12
    • 85020057289 scopus 로고    scopus 로고
    • Variable importance in binary regression trees and forests
    • H. Ishwaran. Variable importance in binary regression trees and forests. Electronic Journal of Statistics, 1:519-537, 2007.
    • (2007) Electronic Journal of Statistics , vol.1 , pp. 519-537
    • Ishwaran, H.1
  • 16
    • 24344458137 scopus 로고    scopus 로고
    • Feature selection based on mutual information: Criteria of Max-Dependency, Max-Relevance, and Min-Redundancy
    • DOI 10.1109/TPAMI.2005.159
    • H. Peng, F. Long, and C. Ding. Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(8):1226-1238, Aug. 2005. (Pubitemid 41245053)
    • (2005) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.27 , Issue.8 , pp. 1226-1238
    • Peng, H.1    Long, F.2    Ding, C.3
  • 18
    • 70649114623 scopus 로고    scopus 로고
    • Navigating random forests and related advances in algorithmic modeling
    • D. S. Siroky. Navigating random forests and related advances in algorithmic modeling. Statistics Surveys, 3:147-163, 2009.
    • (2009) Statistics Surveys , vol.3 , pp. 147-163
    • Siroky, D.S.1
  • 19
    • 27144516097 scopus 로고    scopus 로고
    • Pareto-front exploitation in symbolic regression
    • U.-M. O'Reilly, T. Yu, R. L. Riolo, and B. Worzel, editors, chapter 17, Springer, Ann Arbor, 13-15 May
    • G. Smits and M. Kotanchek. Pareto-front exploitation in symbolic regression. In U.-M. O'Reilly, T. Yu, R. L. Riolo, and B. Worzel, editors, Genetic Programming Theory and Practice II, chapter 17, pages 283-299. Springer, Ann Arbor, 13-15 May 2004.
    • (2004) Genetic Programming Theory and Practice II , pp. 283-299
    • Smits, G.1    Kotanchek, M.2
  • 21
    • 33847096395 scopus 로고    scopus 로고
    • Bias in random forest variable importance measures: Illustrations, sources and a solution
    • Jan.
    • C. Strobl, A. L. Boulesteix, A. Zeileis, and T. Hothorn. Bias in random forest variable importance measures: Illustrations, sources and a solution. BMC Bioinformatics, 8(1):25+, Jan. 2007.
    • (2007) BMC Bioinformatics , vol.8 , Issue.1 , pp. 25
    • Strobl, C.1    Boulesteix, A.L.2    Zeileis, A.3    Hothorn, T.4
  • 23
    • 77955895438 scopus 로고    scopus 로고
    • Knowledge mining with genetic programming methods for variable selection in flavor design
    • K. Vladislavleva, K. Veeramachaneni, M. Burland, J. Parcon, and U.-M. O'Reilly. Knowledge mining with genetic programming methods for variable selection in flavor design. In GECCO, pages 941-948, 2010.
    • (2010) GECCO , pp. 941-948
    • Vladislavleva, K.1    Veeramachaneni, K.2    Burland, M.3    Parcon, J.4    O'Reilly, U.-M.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.