-
1
-
-
39849102639
-
Simultaneous regression shrinkage, variable selection, and supervised clustering of predictors with oscar
-
Mar.
-
H. D. Bondell and B. J. Reich. Simultaneous regression shrinkage, variable selection, and supervised clustering of predictors with oscar. Biometrics, 64:115-123, Mar. 2008.
-
(2008)
Biometrics
, vol.64
, pp. 115-123
-
-
Bondell, H.D.1
Reich, B.J.2
-
2
-
-
0030211964
-
Bagging predictors
-
L. Breiman. Bagging predictors. Machine Learning, 24:123-140, August 1996. (Pubitemid 126724382)
-
(1996)
Machine Learning
, vol.24
, Issue.2
, pp. 123-140
-
-
Breiman, L.1
-
3
-
-
0035478854
-
Random forests
-
10.1023/A:1010933404324
-
L. Breiman. Random forests. Machine Learning, 45:5-32, 2001. 10.1023/A:1010933404324.
-
(2001)
Machine Learning
, vol.45
, pp. 5-32
-
-
Breiman, L.1
-
4
-
-
79955783438
-
-
Evolved Analytics LLC. Evolved Analytics LLC
-
Evolved Analytics LLC. DataModeler Release 1.0. Evolved Analytics LLC, 2010.
-
(2010)
DataModeler Release 1.0
-
-
-
7
-
-
70450064693
-
Variable importance assessment in regression: Linear regression versus random forest
-
Nov.
-
U. Grömping. Variable importance assessment in regression: Linear regression versus random forest. The American Statistician, 64:308-319, Nov. 2009.
-
(2009)
The American Statistician
, vol.64
, pp. 308-319
-
-
Grömping, U.1
-
8
-
-
33745561205
-
An introduction to variable and feature selection
-
March
-
I. Guyon and A. Elisseeff. An introduction to variable and feature selection. J. Mach. Learn. Res., 3:1157-1182, March 2003.
-
(2003)
J. Mach. Learn. Res.
, vol.3
, pp. 1157-1182
-
-
Guyon, I.1
Elisseeff, A.2
-
9
-
-
0036161259
-
Gene selection for cancer classification using support vector machines
-
DOI 10.1023/A:1012487302797
-
I. Guyon, J. Weston, S. Barnhill, and V. Vapnik. Gene selection for cancer classification using support vector machines. Machine Learning, 46:389-422, 2002. (Pubitemid 34129977)
-
(2002)
Machine Learning
, vol.46
, Issue.1-3
, pp. 389-422
-
-
Guyon, I.1
Weston, J.2
Barnhill, S.3
Vapnik, V.4
-
10
-
-
80051933264
-
-
Human Development Reports. http://www.hdr.undp.org/.
-
-
-
-
11
-
-
80051937753
-
-
Human Development Research Papers. http://hdr.undp.org/en/reports/global/ hdr2010/papers/.
-
-
-
-
12
-
-
85020057289
-
Variable importance in binary regression trees and forests
-
H. Ishwaran. Variable importance in binary regression trees and forests. Electronic Journal of Statistics, 1:519-537, 2007.
-
(2007)
Electronic Journal of Statistics
, vol.1
, pp. 519-537
-
-
Ishwaran, H.1
-
15
-
-
77955977848
-
Symbolic regression using nearest neighbor indexing
-
New York, NY, USA, ACM
-
R. K. McRee. Symbolic regression using nearest neighbor indexing. In Proceedings of the 12th annual conference companion on Genetic and evolutionary computation, GECCO '10, pages 1983-1990, New York, NY, USA, 2010. ACM.
-
(2010)
Proceedings of the 12th Annual Conference Companion on Genetic and Evolutionary Computation, GECCO '10
, pp. 1983-1990
-
-
McRee, R.K.1
-
16
-
-
24344458137
-
Feature selection based on mutual information: Criteria of Max-Dependency, Max-Relevance, and Min-Redundancy
-
DOI 10.1109/TPAMI.2005.159
-
H. Peng, F. Long, and C. Ding. Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(8):1226-1238, Aug. 2005. (Pubitemid 41245053)
-
(2005)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.27
, Issue.8
, pp. 1226-1238
-
-
Peng, H.1
Long, F.2
Ding, C.3
-
18
-
-
70649114623
-
Navigating random forests and related advances in algorithmic modeling
-
D. S. Siroky. Navigating random forests and related advances in algorithmic modeling. Statistics Surveys, 3:147-163, 2009.
-
(2009)
Statistics Surveys
, vol.3
, pp. 147-163
-
-
Siroky, D.S.1
-
19
-
-
27144516097
-
Pareto-front exploitation in symbolic regression
-
U.-M. O'Reilly, T. Yu, R. L. Riolo, and B. Worzel, editors, chapter 17, Springer, Ann Arbor, 13-15 May
-
G. Smits and M. Kotanchek. Pareto-front exploitation in symbolic regression. In U.-M. O'Reilly, T. Yu, R. L. Riolo, and B. Worzel, editors, Genetic Programming Theory and Practice II, chapter 17, pages 283-299. Springer, Ann Arbor, 13-15 May 2004.
-
(2004)
Genetic Programming Theory and Practice II
, pp. 283-299
-
-
Smits, G.1
Kotanchek, M.2
-
20
-
-
48549095457
-
Conditional variable importance for random forests
-
July
-
C. Strobl, A. L. Boulesteix, T. Kneib, T. Augustin, and A. Zeileis. Conditional variable importance for random forests. BMC Bioinformatics, 9(1):307+, July 2008.
-
(2008)
BMC Bioinformatics
, vol.9
, Issue.1
, pp. 307
-
-
Strobl, C.1
Boulesteix, A.L.2
Kneib, T.3
Augustin, T.4
Zeileis, A.5
-
21
-
-
33847096395
-
Bias in random forest variable importance measures: Illustrations, sources and a solution
-
Jan.
-
C. Strobl, A. L. Boulesteix, A. Zeileis, and T. Hothorn. Bias in random forest variable importance measures: Illustrations, sources and a solution. BMC Bioinformatics, 8(1):25+, Jan. 2007.
-
(2007)
BMC Bioinformatics
, vol.8
, Issue.1
, pp. 25
-
-
Strobl, C.1
Boulesteix, A.L.2
Zeileis, A.3
Hothorn, T.4
-
23
-
-
77955895438
-
Knowledge mining with genetic programming methods for variable selection in flavor design
-
K. Vladislavleva, K. Veeramachaneni, M. Burland, J. Parcon, and U.-M. O'Reilly. Knowledge mining with genetic programming methods for variable selection in flavor design. In GECCO, pages 941-948, 2010.
-
(2010)
GECCO
, pp. 941-948
-
-
Vladislavleva, K.1
Veeramachaneni, K.2
Burland, M.3
Parcon, J.4
O'Reilly, U.-M.5
-
24
-
-
79957625130
-
-
Technical report, Arizona State University, June
-
Z. Zhao, F. Morstatter, S. Sharma, S. Alelyani, A. Anand, and H. Liu. Advancing feature selection research - asu feature selection repository. Technical report, Arizona State University, June 2010.
-
(2010)
Advancing Feature Selection Research - Asu Feature Selection Repository
-
-
Zhao, Z.1
Morstatter, F.2
Sharma, S.3
Alelyani, S.4
Anand, A.5
Liu, H.6
|