메뉴 건너뛰기




Volumn 3, Issue , 2009, Pages 147-163

Navigating random forests and related advances in algorithmic modeling

Author keywords

Algorithmic methods; Bagging; Boosting; CART; Ensemble and committee methods; Non parametrics; Random forests

Indexed keywords


EID: 70649114623     PISSN: None     EISSN: 19357516     Source Type: Journal    
DOI: 10.1214/07-SS033     Document Type: Article
Times cited : (146)

References (80)
  • 2
    • 84857415609 scopus 로고    scopus 로고
    • Duke University, Aug. 29-Nov. 28
    • Banks, D. 2007. Lectures on Statistical Data Mining, Duke University, Aug. 29-Nov. 28. http://www.stat.duke.edu/~banks/218-lectures.dir/
    • (2007) Lectures On Statistical Data Mining
    • Banks, D.1
  • 3
    • 0032645080 scopus 로고    scopus 로고
    • An Empirical Comparison of Voting Classification Algorithms
    • Bauer, E. and Kohavi, R. 1999. 'An Empirical Comparison of Voting Classification Algorithms,' Machine Learning, 36, No. 1/2, 105-139.
    • (1999) Machine Learning , vol.36 , Issue.1-2 , pp. 105-139
    • Bauer, E.1    Kohavi, R.2
  • 5
    • 31944452324 scopus 로고    scopus 로고
    • An Introduction to Ensemble Methods for Data Analysis
    • (February)
    • Berk, R. 2006. 'An Introduction to Ensemble Methods for Data Analysis.' Sociological Methods and Research, 34: 3, (February), 263-95.
    • (2006) Sociological Methods and Research , vol.34 , Issue.3 , pp. 263-295
    • Berk, R.1
  • 6
    • 26444580147 scopus 로고    scopus 로고
    • Statistical Difficulties in Determining the Role of Race in Capital Cases
    • Berk, R., A. Li and L. Hickman. 2005. 'Statistical Difficulties in Determining the Role of Race in Capital Cases', Journal of Quantitative Criminology, 21: 4, 365-390.
    • (2005) Journal of Quantitative Criminology , vol.21 , Issue.4 , pp. 365-390
    • Berk, R.1    Li, A.2    Hickman, L.3
  • 8
    • 84857438592 scopus 로고    scopus 로고
    • Breiman, L. and A. Cutler, RAF: http://www.math.usu.edu/~adele/forests/cc_graphics.htm
    • RAF
    • Breiman, L.1    Cutler, A.2
  • 10
    • 0000343716 scopus 로고
    • Submodel selection and evaluation in regression: The X-random case
    • Breiman, L., and P. Spector. 1992. 'Submodel selection and evaluation in regression: The X-random case,' International Statistical Review, 60: 291-319.
    • (1992) International Statistical Review , vol.60 , pp. 291-319
    • Breiman, L.1    Spector, P.2
  • 11
    • 0030211964 scopus 로고    scopus 로고
    • Bagging Predictors
    • Breiman, L. 1996a. 'Bagging Predictors.' Machine Learning 26: 123-40.
    • (1996) Machine Learning , vol.26 , pp. 123-140
    • Breiman, L.1
  • 13
    • 0006001358 scopus 로고    scopus 로고
    • UC Berkeley, Statistics Department, Technical Report N
    • Breiman, L. 1999. 'Random Forests-Random Features.' UC Berkeley, Statistics Department, Technical Report N. 567.
    • (1999) Random Forests-Random Features , pp. 567
    • Breiman, L.1
  • 14
    • 0035478854 scopus 로고    scopus 로고
    • Random Forests
    • Breiman, L. 2001a. 'Random Forests.' Machine Learning 45: 5-32.
    • (2001) Machine Learning , vol.45 , pp. 5-32
    • Breiman, L.1
  • 15
    • 0000245743 scopus 로고    scopus 로고
    • Statistical Modeling: Two Cultures (with discussion)
    • Breiman, L. 2001b. 'Statistical Modeling: Two Cultures' (with discussion). Statistical Science 16: 199-231.
    • (2001) Statistical Science , vol.16 , pp. 199-231
    • Breiman, L.1
  • 17
    • 33745182398 scopus 로고    scopus 로고
    • Consistency For A SimpleModel Of RandomForests
    • Statistics Department University Of California at Berkeley, September 9, 2004
    • Breiman, L. 2004a. 'Consistency For A SimpleModel Of RandomForests,' Technical Report 670, Statistics Department University Of California at Berkeley, September 9, 2004.
    • (2004) Technical Report , vol.670
    • Breiman, L.1
  • 21
    • 0036643067 scopus 로고    scopus 로고
    • Estimating Generalization Error on Two-Class Datasets Using Out-of-Bag Estimates
    • Bylander, T. 2002. 'Estimating Generalization Error on Two-Class Datasets Using Out-of-Bag Estimates,' Machine Learning 48, 1-3, p. 287-297.
    • (2002) Machine Learning , vol.48 , Issue.1-3 , pp. 287-297
    • Bylander, T.1
  • 22
    • 43949125818 scopus 로고    scopus 로고
    • Evaluation of Random Forest and Adaboost tree-based ensemble classification and spectral band selection for ecotope mapping using airborne hyperspectral imagery
    • 16 June 2008
    • Chan, J.C-W. and D. Paelinckx. 2008. 'Evaluation of Random Forest and Adaboost tree-based ensemble classification and spectral band selection for ecotope mapping using airborne hyperspectral imagery,' Remote Sensing of Environment 112, 6, 16 June 2008, 2999-3011.
    • (2008) Remote Sensing of Environment , vol.112 , Issue.6 , pp. 2999-3011
    • Chan, J.C-W.1    Paelinckx, D.2
  • 23
    • 0000057576 scopus 로고
    • Controlling bias in observational studies: A review
    • Series A
    • Cochran, W.G., and D.B. Rubin. 1973. Controlling bias in observational studies: A review. Sankhya: The Indian Journal of Statistics, Series A 35(Part 4): 417-66.
    • (1973) Sankhya: The Indian Journal of Statistics , vol.35 , Issue.PART. 4 , pp. 417-466
    • Cochran, W.G.1    Rubin, D.B.2
  • 26
    • 35348970485 scopus 로고    scopus 로고
    • 'GeneSrF and varSelRF: A web-based tool and R package for gene selection and classification using random forest
    • Diaz-Uriarte, R. 2007. 'GeneSrF and varSelRF: a web-based tool and R package for gene selection and classification using random forest, BMC Bioinformatics, 8: 328.
    • (2007) BMC Bioinformatics , vol.8 , pp. 328
    • Diaz-Uriarte, R.1
  • 29
    • 0142080707 scopus 로고    scopus 로고
    • Ensemble Methods inMachine Learning
    • Available at:
    • Dietterich, T. 2007. 'Ensemble Methods inMachine Learning,' Available at: eecs.oregonstate.edu/~tgd/publications/mcs-ensembles.ps.gz.
    • (2007)
    • Dietterich, T.1
  • 30
    • 0002344794 scopus 로고
    • Bootstrap methods: Another look at the jackknife
    • Efron, B. 1979. 'Bootstrap methods: another look at the jackknife,' The Annals of Statistics 7: 1-26.
    • (1979) The Annals of Statistics , vol.7 , pp. 1-26
    • Efron, B.1
  • 31
    • 84945737762 scopus 로고
    • A leisurely look at the bootstrap, the jackknife, and cross-validation
    • Efron, B. and G. Gong. 1983. 'A leisurely look at the bootstrap, the jackknife, and cross-validation,' The American Statistician 37: 36-48.
    • (1983) The American Statistician , vol.37 , pp. 36-48
    • Efron, B.1    Gong, G.2
  • 33
    • 0034164230 scopus 로고    scopus 로고
    • Additive Logistic Regression: A Statistical View of Boosting (with discussion)
    • Friedman, J.H., T. Hastie, and R. Tibsharini. 2000. 'Additive Logistic Regression: A Statistical View of Boosting' (with discussion). Annals of Statistics 28: 337-407.
    • (2000) Annals of Statistics , vol.28 , pp. 337-407
    • Friedman, J.H.1    Hastie, T.2    Tibsharini, R.3
  • 34
    • 0035470889 scopus 로고    scopus 로고
    • Greedy Function Approximation: A Gradient Boosting Machine
    • Friedman, J.H., T. Hastie, and R. Tibsharini. 2001. 'Greedy Function Approximation: A Gradient Boosting Machine.' Annals of Statistics 29: 1189-1232.
    • (2001) Annals of Statistics , vol.29 , pp. 1189-1232
    • Friedman, J.H.1    Hastie, T.2    Tibsharini, R.3
  • 36
    • 12144290088 scopus 로고    scopus 로고
    • Finite sample properties of propensity score matching and weighting estimators
    • Frölich, M. 2004. 'Finite sample properties of propensity score matching and weighting estimators,' Review of Econometrics and Statistics 86: 77-90.
    • (2004) Review of Econometrics and Statistics , vol.86 , pp. 77-90
    • Frölich, M.1
  • 37
    • 3543107923 scopus 로고    scopus 로고
    • Bagging Equalizes Influence
    • Grandvalet, Y. 2004. 'Bagging Equalizes Influence.' Machine Learning 55: 251-70.
    • (2004) Machine Learning , vol.55 , pp. 251-270
    • Grandvalet, Y.1
  • 39
    • 34249885738 scopus 로고    scopus 로고
    • Matching as Nonparametric Preprocessing for Reducing Model Dependence in Parametric Causal Inference
    • Ho, D., K. Imai, G. King, and E. Stuart. 2007. 'Matching as Nonparametric Preprocessing for Reducing Model Dependence in Parametric Causal Inference,' Political Analysis, 15: 199-236.
    • (2007) Political Analysis , vol.15 , pp. 199-236
    • Ho, D.1    Imai, K.2    King, G.3    Stuart, E.4
  • 41
    • 0037410515 scopus 로고    scopus 로고
    • Double-bagging: Combining classifiers by bootstrap aggregation
    • Hothorn, T. and B. Lausen. 2003. 'Double-bagging: Combining classifiers by bootstrap aggregation,' Pattern Recognition, 36: 6, 1303-1309.
    • (2003) Pattern Recognition , vol.36 , Issue.6 , pp. 1303-1309
    • Hothorn, T.1    Lausen, B.2
  • 44
    • 84857435462 scopus 로고    scopus 로고
    • ipred
    • Hothorn, T. and A. Peters, 2009. ipred, http://cran.r-project.org/web/packages/ipred/index.html
    • (2009)
    • Hothorn, T.1    Peters, A.2
  • 47
    • 84906319329 scopus 로고    scopus 로고
    • Forecasting Stock Index Movement: A Comparison of Support Vector Machines and Random Forest
    • Paper Available at SSRN:
    • Kumar, Manish and M. Thenmozhi, 'Forecasting Stock Index Movement: A Comparison of Support Vector Machines and Random Forest,' Indian Institute of Capital Markets 9th Capital Markets Conference Paper Available at SSRN: http://ssrn.com/abstract=876544.
    • Indian Institute of Capital Markets 9th Capital Markets Conference
    • Kumar, M.1    Thenmozhi, M.2
  • 50
    • 0345040873 scopus 로고    scopus 로고
    • Classification and Regression by randomForest
    • (Discussion of the use of the random forest package for R)
    • Liaw, A. and M. Wiener. 'Classification and Regression by randomForest' R News (2002) Vol. 2/3 p. 18 (Discussion of the use of the random forest package for R).
    • (2002) R News , vol.2-3 , pp. 18
    • Liaw, A.1    Wiener, M.2
  • 53
    • 0036556537 scopus 로고    scopus 로고
    • Regression TreesWith Unbiased Variable Selection and Interaction Detection
    • Loh, W.-Y. 2002. 'Regression TreesWith Unbiased Variable Selection and Interaction Detection.' Statistica Sinica 12: 361-86.
    • (2002) Statistica Sinica , vol.12 , pp. 361-386
    • Loh, W.-Y.1
  • 54
    • 84937440094 scopus 로고    scopus 로고
    • The Consistency of Greedy Algorithms for Classification
    • Mannor, S., R. Meir and T. Zhang. 2002. 'The Consistency of Greedy Algorithms for Classification,' COLT, 319-333.
    • (2002) COLT , pp. 319-333
    • Mannor, S.1    Meir, R.2    Zhang, T.3
  • 56
    • 84857419940 scopus 로고    scopus 로고
    • Outlier and Exception Analysis in Rough Sets and Granular Computing
    • (Eds. W Pedrycz, A. Skowron, V. Kreinovich), Wiley 2008
    • Nyuyen, T.T. 2008. 'Outlier and Exception Analysis in Rough Sets and Granular Computing,' in Handbook of Granular Computing (Eds. W Pedrycz, A. Skowron, V. Kreinovich), Wiley 2008.
    • (2008) Handbook of Granular Computing
    • Nyuyen, T.T.1
  • 57
    • 0000551189 scopus 로고    scopus 로고
    • Popular Ensemble Methods: An Empirical Study
    • Opitz, D. and R. Maclin. 1999. 'Popular Ensemble Methods: An Empirical Study', Journal of Artificial Intelligence Research, 11, citeseer.ist.psu.edu/opitz99popular.html.
    • (1999) Journal of Artificial Intelligence Research , vol.11 , pp. 169-198
    • Opitz, D.1    Maclin, R.2
  • 61
    • 0001198982 scopus 로고
    • The consequences of adjusting for a concomitant variable that has been affected by the treatment
    • Series A
    • Rosenbaum, P.R. 1984. 'The consequences of adjusting for a concomitant variable that has been affected by the treatment,' Journal of the Royal Statistical Society, Series A 147: 656-66.
    • (1984) Journal of the Royal Statistical Society , vol.147 , pp. 656-666
    • Rosenbaum, P.R.1
  • 64
    • 77951622706 scopus 로고
    • The central role of the propensity score in observational studies for causal effects
    • Rosenbaum, P.R., and D.B. Rubin. 1983. 'The central role of the propensity score in observational studies for causal effects,' Biometrika 70: 41-55.
    • (1983) Biometrika , vol.70 , pp. 41-55
    • Rosenbaum, P.R.1    Rubin, D.B.2
  • 66
    • 0025448521 scopus 로고
    • The strength of weak learnability
    • Schapire, R.E. 1990. 'The strength of weak learnability,' Machine Learning, 5: 197-227.
    • (1990) Machine Learning , vol.5 , pp. 197-227
    • Schapire, R.E.1
  • 68
    • 0032280519 scopus 로고    scopus 로고
    • Boosting the margin: A new explanation for the effectiveness of voting methods
    • Schapire, R.E., Y. Freund, P. Bartlett, and W.S. Lee. 1998. 'Boosting the margin: A new explanation for the effectiveness of voting methods,' The Annals of Statistics, 26: 1651-1686.
    • (1998) The Annals of Statistics , vol.26 , pp. 1651-1686
    • Schapire, R.E.1    Freund, Y.2    Bartlett, P.3    Lee, W.S.4
  • 69
  • 70
    • 16444381830 scopus 로고    scopus 로고
    • Tumor classification by tissue microarray profiling: Random forest clustering applied to renal cell carcinoma
    • Shi, T., Seligson, D., Belldegrun, A.S., Palotie, A. and Horvath, S. 2005. 'Tumor classification by tissue microarray profiling: random forest clustering applied to renal cell carcinoma,' Modern Pathology 18: 4, 547-57.
    • (2005) Modern Pathology , vol.18 , Issue.4 , pp. 547-557
    • Shi, T.1    Seligson, D.2    Belldegrun, A.S.3    Palotie, A.4    Horvath, S.5
  • 72
    • 33847096395 scopus 로고    scopus 로고
    • Bias in RandomForest Variable Importance Measures: Illustrations, Sources and a Solution
    • Strobl, C., A. Boulesteix, A. Zeileis and T. Hothorn. 2007. Bias in RandomForest Variable Importance Measures: Illustrations, Sources and a Solution. BMC Bioinformatics, 8, 25. http://www.biomedcentral.com/1471-2105/8/25/abstract.
    • (2007) BMC Bioinformatics , vol.8 , pp. 25
    • Strobl, C.1    Boulesteix, A.2    Zeileis, A.3    Hothorn, T.4
  • 73
    • 71249149634 scopus 로고    scopus 로고
    • Danger: High Power! - Exploring the Statistical Properties of a Test for Random Forest Variable Importance
    • Department of Statistics, University of Munich
    • Strobl, C. and A. Zeileis. 2008. 'Danger: High Power! - Exploring the Statistical Properties of a Test for Random Forest Variable Importance,' Technical Report Number 017, Department of Statistics, University of Munich.
    • (2008) Technical Report Number 017
    • Strobl, C.1    Zeileis, A.2
  • 75
    • 0000388992 scopus 로고
    • Consistent nonparametric regression
    • Stone, C. 1977. 'Consistent nonparametric regression,' The Annals of Statistics, 5: 595-645.
    • (1977) The Annals of Statistics , vol.5 , pp. 595-645
    • Stone, C.1
  • 79
    • 84857435467 scopus 로고    scopus 로고
    • Available at:
    • Wang, T. MATLAB R13. Available at: http://lib.stat.cmu.edu/matlab/
    • MATLAB R13
    • Wang, T.1
  • 80
    • 32544435787 scopus 로고    scopus 로고
    • Short-term prediction of mortality in patients with systemic lupus erythematosus: Classification of outcomes using Random Forests
    • Ward, M., S. Pajevic, J. Dreyfuss, and J. Malley. 2006. 'Short-term prediction of mortality in patients with systemic lupus erythematosus: classification of outcomes using Random Forests,' Arthritis and Rheumatism 55: 74-80.
    • (2006) Arthritis and Rheumatism , vol.55 , pp. 74-80
    • Ward, M.1    Pajevic, S.2    Dreyfuss, J.3    Malley, J.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.