메뉴 건너뛰기




Volumn 18, Issue 5, 2008, Pages 389-403

Pruning artificial neural networks using neural complexity measures

Author keywords

Neural complexity; Neural networks; Neuroevolution; Pruning; Robot controllers

Indexed keywords

BACKPROPAGATION; ELECTRIC NETWORK TOPOLOGY; IMAGE CLASSIFICATION; INFORMATION THEORY; ROBOTICS; VEGETATION;

EID: 55849084307     PISSN: 01290657     EISSN: None     Source Type: Journal    
DOI: 10.1142/S012906570800166X     Document Type: Article
Times cited : (25)

References (51)
  • 4
    • 0028245445 scopus 로고
    • A measure for brain complexity: Relating functional segregation and integration in the nervous system
    • May
    • G. Tononi, O. Sporns, and G. M. Edelman, A measure for brain complexity: Relating functional segregation and integration in the nervous system, in Proc. of the National Academy of Science of USA (May 1994).
    • (1994) Proc. of the National Academy of Science of USA
    • Tononi, G.1    Sporns, O.2    Edelman, G.M.3
  • 6
    • 0001234705 scopus 로고
    • Second order derivatives for network pruning: Optimal Brain Surgeon
    • B. Hassibi and D. G. Stork, Second order derivatives for network pruning: Optimal Brain Surgeon, Adv. Neural Inform. Process. Syst. 4 (1993).
    • (1993) Adv. Neural Inform. Process. Syst , vol.4
    • Hassibi, B.1    Stork, D.G.2
  • 7
    • 0031143030 scopus 로고    scopus 로고
    • A new evolutionary system for Evolving artificial neural networks
    • May
    • X. Yao and Y. Liu, A new evolutionary system for Evolving artificial neural networks, IEEE Trans. Neural Networks 8 (3) (May 1997).
    • (1997) IEEE Trans. Neural Networks , vol.8 , Issue.3
    • Yao, X.1    Liu, Y.2
  • 8
    • 0033362601 scopus 로고    scopus 로고
    • Evolving artificial neural networks
    • September
    • X. Yao, Evolving artificial neural networks, in Proc. of the IEEE 87 (9) (September 1999).
    • (1999) Proc. of the IEEE , vol.87 , Issue.9
    • Yao, X.1
  • 10
    • 0001940458 scopus 로고
    • Adaptive mixtures of local experts
    • R. Jacobs and M. Jordan, Adaptive mixtures of local experts, Neural Comput. 3 (1991).
    • (1991) Neural Comput , vol.3
    • Jacobs, R.1    Jordan, M.2
  • 15
    • 0034322846 scopus 로고    scopus 로고
    • Connectivity and complexity: The relationship between neuroanatomy and brain dynamics
    • O. Sporns, G. Tononi, and G. M. Edelman, Connectivity and complexity: The relationship between neuroanatomy and brain dynamics, in Neural Network 13 (2000).
    • (2000) Neural Network , vol.13
    • Sporns, O.1    Tononi, G.2    Edelman, G.M.3
  • 16
    • 33744924504 scopus 로고    scopus 로고
    • Small-world connectivity, motif composition, and complexity of fractal neuronal connections
    • O. Sporns, Small-world connectivity, motif composition, and complexity of fractal neuronal connections, in Biosystems 85 (2006).
    • (2006) Biosystems , vol.85
    • Sporns, O.1
  • 18
    • 78651542219 scopus 로고    scopus 로고
    • Evolution of neural structure and complexity in a computational ecology
    • L. S. Yaeger, and O. Sporns, Evolution of neural structure and complexity in a computational ecology, in Proc. 10th Int. Conf. on Artif. Life, (2006).
    • (2006) Proc. 10th Int. Conf. on Artif. Life
    • Yaeger, L.S.1    Sporns, O.2
  • 19
    • 58449121382 scopus 로고    scopus 로고
    • Evolution of artificial neural networks for robot control using speciation and complexity measures
    • Amsterdam
    • T. Jorgensen and B. Haynes, Evolution of artificial neural networks for robot control using speciation and complexity measures, in Proc. of IADIS - Intelligent Syst. and Agents (Amsterdam 2008).
    • (2008) Proc. of IADIS - Intelligent Syst. and Agents
    • Jorgensen, T.1    Haynes, B.2
  • 23
    • 0000900876 scopus 로고
    • Skeletonization: A technique for trimming the fat from a network via relevance assessment
    • M. C. Mozer and P. Smolensky, Skeletonization: A technique for trimming the fat from a network via relevance assessment, Adv. Neural Inform. Process. Syst. 1 (1989).
    • (1989) Adv. Neural Inform. Process. Syst , vol.1
    • Mozer, M.C.1    Smolensky, P.2
  • 24
    • 0025447562 scopus 로고
    • A simple procedure for pruning backpropagation trained neural networks
    • June
    • E.D. Karnin, A simple procedure for pruning backpropagation trained neural networks, IEEE Trans. Neural Networks 1 (2) (June 1990).
    • (1990) IEEE Trans. Neural Networks , vol.1 , Issue.2
    • Karnin, E.D.1
  • 25
    • 0027662338 scopus 로고
    • Pruning algorithms - A survey
    • September
    • R. Reed, Pruning algorithms - A survey, IEEE Trans. Neural Networks 4 (5) (September 1993).
    • (1993) IEEE Trans. Neural Networks , vol.4 , Issue.5
    • Reed, R.1
  • 27
    • 55849084755 scopus 로고    scopus 로고
    • A node pruning algorithm based on optimal brain surgeon for feedforward neural networks
    • China
    • J. Xu, A node pruning algorithm based on optimal brain surgeon for feedforward neural networks, in Proc. 3rd Int. Symposium on Neural Network (China, 2006).
    • (2006) Proc. 3rd Int. Symposium on Neural Network
    • Xu, J.1
  • 30
    • 84899002752 scopus 로고    scopus 로고
    • Fast network pruning and feature extraction using the unit-OBS algorithm
    • A. Stahlberger and M. Riedmiller, Fast network pruning and feature extraction using the unit-OBS algorithm, Adv. Neural Inform. Process. Syst. 10 (1997).
    • (1997) Adv. Neural Inform. Process. Syst , vol.10
    • Stahlberger, A.1    Riedmiller, M.2
  • 32
    • 55849150657 scopus 로고    scopus 로고
    • A comparative analysis of simplification and complexification in the evolution of neural network topologies
    • D. James and P. Tucker, A comparative analysis of simplification and complexification in the evolution of neural network topologies, in Proc. of the Genet. and Evol. Conf. (2004).
    • (2004) Proc. of the Genet. and Evol. Conf
    • James, D.1    Tucker, P.2
  • 33
    • 0030633575 scopus 로고    scopus 로고
    • A penalty function approach for pruning feedforward neural networks
    • R. Setiono, A penalty function approach for pruning feedforward neural networks, Neural Comp 9 (1997).
    • (1997) Neural Comp , vol.9
    • Setiono, R.1
  • 34
    • 33745937122 scopus 로고    scopus 로고
    • Effective neural network pruning using cross-validation
    • Montreal, Canada
    • T. Q. Huynh and R. Setiono, Effective neural network pruning using cross-validation, in Proc. Int. Joint Conf. Neural Networks (Montreal, Canada, 2005).
    • (2005) Proc. Int. Joint Conf. Neural Networks
    • Huynh, T.Q.1    Setiono, R.2
  • 36
    • 0000473247 scopus 로고
    • A back-propagation algorithm with optimal use of hidden units
    • Y. Chauvin, A back-propagation algorithm with optimal use of hidden units, Adv. Neural Inform. Process. Syst. 1 (1989).
    • (1989) Adv. Neural Inform. Process. Syst , vol.1
    • Chauvin, Y.1
  • 37
    • 0001765492 scopus 로고
    • Simplifying neural networks by soft weights-Sharing
    • S. J. Nowlan and G. E. Hinton, Simplifying neural networks by soft weights-Sharing, Neural Comput. 4 (1992).
    • (1992) Neural Comput , vol.4
    • Nowlan, S.J.1    Hinton, G.E.2
  • 38
    • 55849144475 scopus 로고    scopus 로고
    • Pruning neural networks with distribution estimation algorithms
    • E. Cantú-Paz, Pruning neural networks with distribution estimation algorithms, in Proc. of the Genet. and Evol. Conf. (2003).
    • (2003) Proc. of the Genet. and Evol. Conf
    • Cantú-Paz, E.1
  • 39
    • 0001420440 scopus 로고
    • The evolution of connectivity: Pruning neural networks using genetic algorithms
    • Washington
    • D. Whitley and G. Bogart, The evolution of connectivity: Pruning neural networks using genetic algorithms, in Proc. Int. Joint Conf. Neural Networks 1 (Washington, 1990).
    • (1990) Proc. Int. Joint Conf. Neural Networks , vol.1
    • Whitley, D.1    Bogart, G.2
  • 41
    • 35248855028 scopus 로고
    • Using GA to train NN using weight sharing, weight pruning and unit pruning
    • Technical report, Aarhus University, Computer Science Department Aarhus, Denmark
    • M. Schmidt and T. Stidsen, Using GA to train NN using weight sharing, weight pruning and unit pruning, Technical report, Aarhus University, Computer Science Department (Aarhus, Denmark, 1995).
    • (1995)
    • Schmidt, M.1    Stidsen, T.2
  • 43
    • 0025889440 scopus 로고
    • Benefits of gain: Speeded learning and minimal hidden layers in back-propagation networks
    • Man and Cyhern
    • J. K. Kruschke and J. Rodriguez-Movellan, Benefits of gain: Speeded learning and minimal hidden layers in back-propagation networks, IEEE Trans. Syst., Man and Cyhern. 21 (1991).
    • (1991) IEEE Trans. Syst , vol.21
    • Kruschke, J.K.1    Rodriguez-Movellan, J.2
  • 44
    • 0024904547 scopus 로고    scopus 로고
    • J. K. Kruschke, improving generalization in backpropagation networks with distributed bottlenecks, in Proc. Int. Joint Conf. Neural Networks 1 (Washington, 1989).
    • J. K. Kruschke, improving generalization in backpropagation networks with distributed bottlenecks, in Proc. Int. Joint Conf. Neural Networks 1 (Washington, 1989).
  • 45
    • 0036529665 scopus 로고    scopus 로고
    • Novel neural network feature selection procedure by generalization maximization with application to automatic robot guidance
    • S. Fiori, F. Grimani, and P. Burrascano, Novel neural network feature selection procedure by generalization maximization with application to automatic robot guidance, Int. J. of Smart Eng. System Design, 4 (2) (2002) 91-106.
    • (2002) Int. J. of Smart Eng. System Design , vol.4 , Issue.2 , pp. 91-106
    • Fiori, S.1    Grimani, F.2    Burrascano, P.3
  • 49
    • 55849118546 scopus 로고    scopus 로고
    • G. Edelman, Neural Darwinism - The Theory of Neuronal Group Selection (Basic Books New York 1989, Print by Oxford Press 1990).
    • G. Edelman, Neural Darwinism - The Theory of Neuronal Group Selection (Basic Books New York 1989, Print by Oxford Press 1990).
  • 51
    • 84856043672 scopus 로고
    • A Mathematical Theory of Communica-tion
    • C. E. Shannon, A Mathematical Theory of Communica-tion, The Bell Syst. Tech. J. 27 (1948).
    • (1948) The Bell Syst. Tech. J , vol.27
    • Shannon, C.E.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.