메뉴 건너뛰기




Volumn 358, Issue , 2011, Pages 273-315

Ontology-based meta-mining of knowledge discovery workflows

Author keywords

[No Author keywords available]

Indexed keywords


EID: 79961058143     PISSN: 1860949X     EISSN: None     Source Type: Book Series    
DOI: 10.1007/978-3-642-20980-2_9     Document Type: Article
Times cited : (61)

References (82)
  • 2
    • 33750292535 scopus 로고    scopus 로고
    • A meta-learning approach to automatic kernel selection for support vector machines
    • DOI 10.1016/j.neucom.2006.03.004, PII S0925231206001056
    • Ali, S., Smith-Miles, K.: A meta-learning approach to automatic kernel selection for support vector machines. Neurocomputing 70(1-3), 173-186 (2006) (Pubitemid 44615780)
    • (2006) Neurocomputing , vol.70 , Issue.1-3 , pp. 173-186
    • Ali, S.1    Smith-Miles, K.A.2
  • 3
    • 34247390032 scopus 로고    scopus 로고
    • A review of recent research in metareasoning and metalearning
    • Anderson, M.L., Oates, T.: A review of recent research in metareasoning and met-alearning. AI Magazine 28(1), 7-16 (2007) (Pubitemid 46629342)
    • (2007) AI Magazine , vol.28 , Issue.1 , pp. 7-16
    • Anderson, M.L.1    Oates, T.2
  • 5
    • 84898957627 scopus 로고    scopus 로고
    • For valid generalization, the size of the weights is more important than the size of the network
    • Bartlett, P.: For valid generalization, the size of the weights is more important than the size of the network. In: Advances in Nueral Information Processing Systems, NIPS-1997 (1997)
    • (1997) Advances in Nueral Information Processing Systems, NIPS-1997
    • Bartlett, P.1
  • 9
    • 17044440165 scopus 로고    scopus 로고
    • Toward intelligent assistance for a data mining process: An ontology-based approach for cost-sensitive classification
    • DOI 10.1109/TKDE.2005.67
    • Bernstein, A., Provost, F., Hill, S.: Toward intelligent assistance for a data mining process: An ontology-based approach for cost-sensitive classification. IEEE Transactions on Knowledge and Data Engineering 17(4), 503-518 (2005) (Pubitemid 40495593)
    • (2005) IEEE Transactions on Knowledge and Data Engineering , vol.17 , Issue.4 , pp. 503-518
    • Bernstein, A.1    Provost, F.2    Hill, S.3
  • 11
    • 38049132711 scopus 로고    scopus 로고
    • Experiment Databases: Towards an Improved Experimental Methodology in Machine Learning
    • Kok, J.N., Koronacki, J., Lopez de Mantaras, R., Matwin, S., Mladenic, D., Skowron, A. (eds.) Springer, Heidelberg
    • Blockeel, H., Vanschoren, J.: Experiment Databases: Towards an Improved Experimental Methodology in Machine Learning. In: Kok, J.N., Koronacki, J., Lopez de Mantaras, R., Matwin, S., Mladenic, D., Skowron, A. (eds.) PKDD 2007. LNCS (LNAI), vol. 4702, pp. 6-17. Springer, Heidelberg (2007)
    • (2007) PKDD 2007. LNCS (LNAI) , vol.4702 , pp. 6-17
    • Blockeel, H.1    Vanschoren, J.2
  • 12
    • 84958528434 scopus 로고
    • Characterizing the applicability of classification algorithms using meta-level learning
    • Bergadano, F., De Raedt, L. (eds.) Springer, Heidelberg
    • Brazdil, P., Gama, J., Henery, B.: Characterizing the applicability of classification algorithms using meta-level learning. In: Bergadano, F., De Raedt, L. (eds.) ECML 1994. LNCS, vol. 784, pp. 83-102. Springer, Heidelberg (1994)
    • (1994) ECML 1994. LNCS , vol.784 , pp. 83-102
    • Brazdil, P.1    Gama, J.2    Henery, B.3
  • 19
    • 0141688723 scopus 로고    scopus 로고
    • Model complexity control and statistical learning theory
    • Cherkassky, V.: Model complexity control and statistical learning theory. Natural Computing 1, 109-133 (2002)
    • (2002) Natural Computing , vol.1 , pp. 109-133
    • Cherkassky, V.1
  • 23
    • 9444297285 scopus 로고    scopus 로고
    • Meta-learning via search combined with parameter optimization
    • Springer, Heidelberg
    • Duch, W., Grudzinski, K.: Meta-learning via search combined with parameter optimization. In: Advances in Soft Computing, pp. 13-22. Springer, Heidelberg (2002)
    • (2002) Advances in Soft Computing , pp. 13-22
    • Duch, W.1    Grudzinski, K.2
  • 24
    • 38449086339 scopus 로고    scopus 로고
    • Towards a general framework for data mining
    • Deroski, S., Struyf, J. (eds.) Springer, Heidelberg
    • Džeroski, S.: Towards a general framework for data mining. In: Deroski, S., Struyf, J. (eds.) KDID 2006. LNCS, vol. 4747, pp. 259-300. Springer, Heidelberg (2007)
    • (2007) KDID 2006. LNCS , vol.4747 , pp. 259-300
    • Džeroski, S.1
  • 29
    • 1642379397 scopus 로고    scopus 로고
    • Introduction to the special issue on meta-learning
    • Giraud-Carrier, C, Vilalta, R., Brazdil, P.: Introduction to the special issue on meta-learning. Machine Learning 54, 187-193 (2004)
    • (2004) Machine Learning , vol.54 , pp. 187-193
    • Giraud-Carrier, C.1    Vilalta, R.2    Brazdil, P.3
  • 30
    • 12444258560 scopus 로고
    • Evaluation and selection of biases in machine learning
    • Gordon, D., DesJardins, M.: Evaluation and selection of biases in machine learning. Machine Learning 20, 5-22 (1995)
    • (1995) Machine Learning , vol.20 , pp. 5-22
    • Gordon, D.1    Desjardins, M.2
  • 31
    • 34548809323 scopus 로고    scopus 로고
    • Versatile and efficient meta-learning architecture: Knowledge representation and management in computational intelligence
    • DOI 10.1109/CIDM.2007.368852, 4221276, Proceedings of the 2007 IEEE Symposium on Computational Intelligence and Data Mining, CIDM 2007
    • Grabczewski, K., Jankowski, N.: Versatile and efficient meta-learning architecture: knowledge representation and management in computational intelligence. In: IEEE Symposium on Computational Intelligence and Data Mining, pp. 51-58 (2007) (Pubitemid 47431416)
    • (2007) Proceedings of the 2007 IEEE Symposium on Computational Intelligence and Data Mining, CIDM 2007 , pp. 51-58
    • Grabczewski, K.1    Jankowski, N.2
  • 34
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • DOI 10.1023/A:1012487302797
    • Guyon, I., Weston, J., Barnhill, S., Vapnik, V.: Gene selection for cancer classification using support vector machines. Machine Learning 46, 389-422 (2002) (Pubitemid 34129977)
    • (2002) Machine Learning , vol.46 , Issue.1-3 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.4
  • 36
    • 79961051727 scopus 로고    scopus 로고
    • Fusion of Meta-knowledge and Meta-data for Case-Based Model Selection
    • Principles of Data Mining and Knowledge Discovery
    • Hilario, M., Kalousis, A.: Fusion of meta-knowledge and meta-data for case-based model selection. In: Siebes, A., De Raedt, L. (eds.) PKDD 2001. LNCS (LNAI), vol. 2168, pp. 180-191. Springer, Heidelberg (2001) (Pubitemid 33331860)
    • (2001) LECTURE NOTES IN COMPUTER SCIENCE , Issue.2168 , pp. 180-191
    • Hilario, M.1    Kalousis, A.2
  • 38
    • 71049178689 scopus 로고    scopus 로고
    • Measures of geometrical complexity in classification problems
    • ch. 1 Springer, Heidelberg
    • Ho, T.K., Basu, M.: Measures of geometrical complexity in classification problems. In: Data Complexity in Pattern Recognition, ch. 1, pp. 3-23. Springer, Heidelberg (2006)
    • (2006) Data Complexity in Pattern Recognition , pp. 3-23
    • Ho, T.K.1    Basu, M.2
  • 39
    • 9444229559 scopus 로고    scopus 로고
    • SEAL-II -The soft spot between richly structured and unstructured knowledge
    • Hotho, A., Maedche, A., Staab, S., Studer, R.: Seal-II-the soft spot between richly structured and unstructured knowledge. Journal of Universal Computer Science 7(7), 566-590 (2001) (Pubitemid 33799205)
    • (2001) Journal of Universal Computer Science , vol.7 , Issue.7 , pp. 566-590
    • Hotho, A.1    Maedche, A.2    Staab, S.3    Studer, R.4
  • 40
    • 79961043915 scopus 로고    scopus 로고
    • Building meta-learning algorithms basing on search controlled by machine complexity
    • Jankowski, N., Grabczewski, K.: Building meta-learning algorithms basing on search controlled by machine complexity. In: IEEE World Congress on Computational Intelligence, pp. 3600-3607 (2008)
    • (2008) IEEE World Congress on Computational Intelligence , pp. 3600-3607
    • Jankowski, N.1    Grabczewski, K.2
  • 42
    • 1642280141 scopus 로고    scopus 로고
    • On data and algorithms: Understanding inductive performance
    • Kalousis, A., Gama, J., Hilario, M.: On data and algorithms: understanding inductive performance. Machine Learning 54, 275-312 (2004)
    • (2004) Machine Learning , vol.54 , pp. 275-312
    • Kalousis, A.1    Gama, J.2    Hilario, M.3
  • 48
    • 66749097244 scopus 로고    scopus 로고
    • Utilising regression-based landmarkers within a meta-learning framework for algorithm selection
    • Ler, D., Koprinska, I., Chawla, S.: Utilising regression-based landmarkers within a meta-learning framework for algorithm selection. In: Proc. ICML 2005 Workshop on Meta-Learning, pp. 44-51 (2005)
    • (2005) Proc. ICML 2005 Workshop on Meta-Learning , pp. 44-51
    • Ler, D.1    Koprinska, I.2    Chawla, S.3
  • 56
    • 84949799605 scopus 로고    scopus 로고
    • Improved dataset characterisation for meta-learning
    • Peng, Y., Flach, P., Soares, C, Brazdil, P.: Improved dataset characterisation for meta-learning. In: Discovery Science, pp. 141-152 (2002)
    • (2002) Discovery Science , pp. 141-152
    • Peng, Y.1    Flach, P.2    Soares, C.3    Brazdil, P.4
  • 58
    • 79961068191 scopus 로고    scopus 로고
    • Data mining and knowledge discovery: The third generation
    • Ras, Z.W., Skowron, A. (eds.) Springer, Heidelberg
    • Piatetskey-Shapiro, G.: Data mining and knowledge discovery: The third generation. In: Ras, Z.W., Skowron, A. (eds.) ISMIS 1997. LNCS, vol. 1325, Springer, Heidelberg (1997)
    • (1997) ISMIS 1997. LNCS , vol.1325
    • Piatetskey-Shapiro, G.1
  • 59
  • 60
    • 84947570401 scopus 로고    scopus 로고
    • Modularisation of domain ontologies implemented in description logics and related formalisms including OWL
    • Rector, A.: Modularisation of domain ontologies implemented in description logics and related formalisms including OWL. In: Proc. International Conference on Knowledge Capture, K-CAP 2003 (2003)
    • (2003) Proc. International Conference on Knowledge Capture, K-CAP 2003
    • Rector, A.1
  • 62
    • 0003056605 scopus 로고
    • The algorithm selection problem
    • Rice, J.: The algorithm selection problem. Advances in Computing 15, 65-118 (1976)
    • (1976) Advances in Computing , vol.15 , pp. 65-118
    • Rice, J.1
  • 64
    • 0141990695 scopus 로고    scopus 로고
    • Theoretical and empirical analysis of ReliefF and RReliefF
    • Sikonja, M.R., Kononenko, I.: Theoretical and empirical analysis of ReliefF and RReliefF. Machine Learning 53, 23-69 (2003)
    • (2003) Machine Learning , vol.53 , pp. 23-69
    • Sikonja, M.R.1    Kononenko, I.2
  • 66
    • 49749086726 scopus 로고    scopus 로고
    • Cross-disciplinary perspectives on meta-learning for algorithm selection
    • Smith-Miles, K.A.: Cross-disciplinary perspectives on meta-learning for algorithm selection. ACM Computing Surveys 41(1) (2008)
    • (2008) ACM Computing Surveys , vol.41 , Issue.1
    • Smith-Miles, K.A.1
  • 67
    • 56349106935 scopus 로고    scopus 로고
    • Zoomed ranking: Selection of classification algorithms based on relevant performance information
    • Zighed, D.A., Komorowski, J., Zytkow, J.M. (eds.) Springer, Heidelberg
    • Soares, C, Brazdil, P.B.: Zoomed ranking: Selection of classification algorithms based on relevant performance information. In: Zighed, D.A., Komorowski, J., Zytkow, J.M. (eds.) PKDD 2000. LNCS (LNAI), vol. 1910, pp. 126-135. Springer, Heidelberg (2000)
    • (2000) PKDD 2000. LNCS (LNAI) , vol.1910 , pp. 126-135
    • Soares, C.1    Brazdil, P.B.2
  • 68
    • 1642276856 scopus 로고    scopus 로고
    • A meta-learning method to select the kernel width in support vector regression
    • Soares, C, Brazdil, P., Kuba, P.: A meta-learning method to select the kernel width in support vector regression. Machine Learning 54(3), 195-209 (2004)
    • (2004) Machine Learning , vol.54 , Issue.3 , pp. 195-209
    • Soares, C.1    Brazdil, P.2    Kuba, P.3
  • 71
    • 79961098079 scopus 로고    scopus 로고
    • Working Notes from the 1998 AAAI Workshop on the Methodology of Applying Machine Learning: Problem Definition, Task Decomposition and Technique Selection
    • Suyama, A., Yamaguchi, T.: Specifying and learning inductive learning systems using ontologies. In: Working Notes from the 1998 AAAI Workshop on the Methodology of Applying Machine Learning: Problem Definition, Task Decomposition and Technique Selection (1998)
    • (1998) Specifying and Learning Inductive Learning Systems Using Ontologies
    • Suyama, A.1    Yamaguchi, T.2
  • 72
    • 84956852172 scopus 로고    scopus 로고
    • Experiments in meta-level learning with ILP
    • Zytkow, J.M., Rauch, J. (eds.) Springer, Heidelberg
    • Todorovski, L., Seroski, S.: Experiments in meta-level learning with ILP. In: Zytkow, J.M., Rauch, J. (eds.) PKDD 1999. LNCS (LNAI), vol. 1704, pp. 98-106. Springer, Heidelberg (1999)
    • (1999) PKDD 1999. LNCS (LNAI) , vol.1704 , pp. 98-106
    • Todorovski, L.1    Seroski, S.2
  • 73
    • 84958654320 scopus 로고    scopus 로고
    • Arbiter meta-learning with dynamic selection of classifiers and its experimental investigation
    • Tsymbal, A., Puuronen, S., Terziyan, V.Y.: Arbiter meta-learning with dynamic selection of classifiers and its experimental investigation. In: Advances in Databases and Information Systems, pp. 205-217 (1999)
    • (1999) Advances in Databases and Information Systems , pp. 205-217
    • Tsymbal, A.1    Puuronen, S.2    Terziyan, V.Y.3
  • 75
    • 0001164493 scopus 로고
    • Shift of bias for inductive learning
    • Michalski, R.S., Carbonell, J.G., Mitchell, T.M. (eds.) ch. 5 Morgan Kaufmann, San Fancisco
    • Utgoff, P.E.: Shift of bias for inductive learning. In: Michalski, R.S., Carbonell, J.G., Mitchell, T.M. (eds.) Machine Learning. An Artificial Intelligence Approach, ch. 5, vol. 2, pp. 107-148. Morgan Kaufmann, San Fancisco (1986)
    • (1986) Machine Learning. An Artificial Intelligence Approach , vol.2 , pp. 107-148
    • Utgoff, P.E.1
  • 77
    • 0036791948 scopus 로고    scopus 로고
    • A perspective view and survey of meta-learning
    • Vilalta, R., Drissi, Y.: A perspective view and survey of meta-learning. Artificial Intelligence Review 18, 77-95 (2002)
    • (2002) Artificial Intelligence Review , vol.18 , pp. 77-95
    • Vilalta, R.1    Drissi, Y.2
  • 79
    • 0000459353 scopus 로고    scopus 로고
    • The lack of a priori distinctions between learning algorithms
    • Wolpert, D.: The lack of a priori distinctions between learning algorithms. Neural Computation 8(7), 1381-1390 (1996)
    • (1996) Neural Computation , vol.8 , Issue.7 , pp. 1381-1390
    • Wolpert, D.1
  • 80
    • 79961069922 scopus 로고    scopus 로고
    • Ten challenging problems in data mining research
    • Yang, Q., Wu, X.: Ten challenging problems in data mining research. International Journal of Inform 5, 594-604 (2006)
    • (2006) International Journal of Inform , vol.5 , pp. 594-604
    • Yang, Q.1    Wu, X.2
  • 81
    • 24344486868 scopus 로고    scopus 로고
    • Efficiently mining frequent trees in a forest: Algorithms and applications
    • Zaki, M.: Efficiently mining frequent trees in a forest: algorithms and applications. IEEE Transactions on Knowledge and Data Engineering 17 (2005)
    • (2005) IEEE Transactions on Knowledge and Data Engineering , vol.17
    • Zaki, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.