메뉴 건너뛰기




Volumn 4747 LNCS, Issue , 2007, Pages 259-300

Towards a general framework for data mining

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHMS; COMPUTER PROGRAMMING LANGUAGES; MATHEMATICAL MODELS;

EID: 38449086339     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-540-75549-4_16     Document Type: Conference Paper
Times cited : (36)

References (70)
  • 3
    • 11444259872 scopus 로고    scopus 로고
    • Models for machine learning and data mining in functional programming
    • Allison, L.: Models for machine learning and data mining in functional programming. Journal of Functional Programming 15(1), 15-32 (2004)
    • (2004) Journal of Functional Programming , vol.15 , Issue.1 , pp. 15-32
    • Allison, L.1
  • 4
    • 32144448763 scopus 로고    scopus 로고
    • Constraints in data mining
    • R. Bayardo ed
    • R. Bayardo (ed.) Constraints in data mining. Special issue of SIGKDD Explorations, 4(1) (2002)
    • (2002) Special issue of SIGKDD Explorations , vol.4 , Issue.1
  • 5
    • 38449100984 scopus 로고    scopus 로고
    • Bishop, CM.: Pattern Recognition and Machine Learning. Springer, Berlin (2006)
    • Bishop, CM.: Pattern Recognition and Machine Learning. Springer, Berlin (2006)
  • 6
    • 38449123908 scopus 로고    scopus 로고
    • Bistarelli, S., Bonch, F.: Interestingness is not a Dichotomy: Introducing Softness in Constrained Pattern Mining. In: Jorge, A.M., Torgo, L., Brázdil, P.B., Camacho, R., Gama, J. (eds.) PKDD 2005. LNCS (LNAI), 3721, Springer, Heidelberg (2005)
    • Bistarelli, S., Bonch, F.: Interestingness is not a Dichotomy: Introducing Softness in Constrained Pattern Mining. In: Jorge, A.M., Torgo, L., Brázdil, P.B., Camacho, R., Gama, J. (eds.) PKDD 2005. LNCS (LNAI), vol. 3721, Springer, Heidelberg (2005)
  • 10
    • 84903198782 scopus 로고    scopus 로고
    • Boulicaut, J.-F., Klemettinen, M., Mannila, H.: Modeling KDD processes within the inductive database framework. In: Mohania, M.K., Tjoa, A.M. (eds.) DaWaK 1999. LNCS, 1676, pp. 293-302. Springer, Heidelberg (1999)
    • Boulicaut, J.-F., Klemettinen, M., Mannila, H.: Modeling KDD processes within the inductive database framework. In: Mohania, M.K., Tjoa, A.M. (eds.) DaWaK 1999. LNCS, vol. 1676, pp. 293-302. Springer, Heidelberg (1999)
  • 11
    • 38449086131 scopus 로고    scopus 로고
    • Constraint-Based Mining and Inductive Databases
    • Boulicaut, J.-F, De Raedt, L, Mannila, H, eds, Springer, Heidelberg
    • Boulicaut, J.-F., De Raedt, L., Mannila, H. (eds.): Constraint-Based Mining and Inductive Databases. LNCS (LNAI), vol. 3848. Springer, Heidelberg (2006)
    • (2006) LNCS (LNAI , vol.3848
  • 13
    • 33745145777 scopus 로고    scopus 로고
    • A survey on condensed representations for frequent sets
    • Boulicaut, J-F, De Raedt, L, Mannila, H, eds, Constraint-Based Mining and Inductive Databases, Springer, Heidelberg
    • Calders, T., Rigotti, C., Boulicaut, J.-F.: A survey on condensed representations for frequent sets. In: Boulicaut, J-F., De Raedt, L., Mannila, H. (eds.) Constraint-Based Mining and Inductive Databases. LNCS (LNAI), vol. 3848, pp. 64-80. Springer, Heidelberg (2006)
    • (2006) LNCS (LNAI , vol.3848 , pp. 64-80
    • Calders, T.1    Rigotti, C.2    Boulicaut, J.-F.3
  • 14
    • 33750377188 scopus 로고    scopus 로고
    • Calders, T., Goethals, B., Prado, A.B.: Integrating pattern mining in relational databases. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) PKDD 2006. LNCS (LNAI), 4213, pp. 454-461. Springer, Heidelberg (2006a)
    • Calders, T., Goethals, B., Prado, A.B.: Integrating pattern mining in relational databases. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) PKDD 2006. LNCS (LNAI), vol. 4213, pp. 454-461. Springer, Heidelberg (2006a)
  • 16
    • 34548741255 scopus 로고    scopus 로고
    • Discriminative frequent pattern analysis for effective classification
    • IEEE Computer Society Press, Los Alamitos
    • Cheng, H., Yan, X., Han, J., Hsu, C-W.: Discriminative frequent pattern analysis for effective classification. In: Proc. 23nd Intl. Conf. on Data Engineering, pp. 716-725. IEEE Computer Society Press, Los Alamitos (2007)
    • (2007) Proc. 23nd Intl. Conf. on Data Engineering , pp. 716-725
    • Cheng, H.1    Yan, X.2    Han, J.3    Hsu, C.-W.4
  • 20
    • 2442458316 scopus 로고    scopus 로고
    • A perspective on inductive databases
    • De Raedt, L.: A perspective on inductive databases. SIGKDD Explorations 4(2), 69-77 (2002a)
    • (2002) SIGKDD Explorations , vol.4 , Issue.2 , pp. 69-77
    • De Raedt, L.1
  • 21
    • 23044533452 scopus 로고    scopus 로고
    • Data mining as constraint logic programming
    • Kakas, A.C, Sadri, F, eds, Computational Logic: Logic Programming and Beyond, Springer, Heidelberg
    • De Raedt, L.: Data mining as constraint logic programming. In: Kakas, A.C., Sadri, F. (eds.) Computational Logic: Logic Programming and Beyond. LNCS (LNAI), vol. 2408, pp. 113-125. Springer, Heidelberg (2002b)
    • (2002) LNCS (LNAI , vol.2408 , pp. 113-125
    • De Raedt, L.1
  • 23
    • 58449124308 scopus 로고    scopus 로고
    • Inductive logic programming in a nutshell
    • Getoor, L, Taskar, B, eds, MIT Press, Cambridge, MA
    • Džeroski, S.: Inductive logic programming in a nutshell. In: Getoor, L., Taskar, B. (eds.) Statistical Relational Learning, MIT Press, Cambridge, MA (2007)
    • (2007) Statistical Relational Learning
    • Džeroski, S.1
  • 24
    • 0011177327 scopus 로고    scopus 로고
    • Džeroski, S, Lavrač, N, eds, Springer, Berlin
    • Džeroski, S., Lavrač, N. (eds.): Relational Data Mining. Springer, Berlin (2001)
    • (2001) Relational Data Mining
  • 25
    • 33745163204 scopus 로고    scopus 로고
    • Inductive queries on polynomial equations
    • Boulicaut, J-F, De Raedt, L, Mannila, H, eds, Constraint-Based Mining and Inductive Databases, Springer, Heidelberg
    • Džeroski, S., Todorovski, L., Ljubič, P.: Inductive queries on polynomial equations. In: Boulicaut, J-F., De Raedt, L., Mannila, H. (eds.) Constraint-Based Mining and Inductive Databases. LNCS (LNAI), vol. 3848, pp. 127-154. Springer, Heidelberg (2006)
    • (2006) LNCS (LNAI , vol.3848 , pp. 127-154
    • Džeroski, S.1    Todorovski, L.2    Ljubič, P.3
  • 26
    • 33745800088 scopus 로고    scopus 로고
    • Summary from the KDD-2003 panel - "Data Mining: The Next 10 Years
    • Fayyad, U., Piatetsky-Shapiro, G., Uthurusamy, R.: Summary from the KDD-2003 panel - "Data Mining: The Next 10 Years". SIGKDD Explorations 5(2), 191-196 (2003)
    • (2003) SIGKDD Explorations , vol.5 , Issue.2 , pp. 191-196
    • Fayyad, U.1    Piatetsky-Shapiro, G.2    Uthurusamy, R.3
  • 27
  • 28
    • 0002433547 scopus 로고    scopus 로고
    • From data mining to knowledge discovery: An overview
    • Fayyad, U, Piatetsky-Shapiro, G, Smyth, P, Uthurusamy, R, eds, MIT Press, Cambridge, MA
    • Fayyad, U., Piatetsky-Shapiro, G., Smyth, P.: From data mining to knowledge discovery: An overview. In: Fayyad, U., Piatetsky-Shapiro, G., Smyth, P., Uthurusamy, R. (eds.) Advances in Knowledge Discovery and Data Mining, pp. 495-515. MIT Press, Cambridge, MA (1996)
    • (1996) Advances in Knowledge Discovery and Data Mining , pp. 495-515
    • Fayyad, U.1    Piatetsky-Shapiro, G.2    Smyth, P.3
  • 30
    • 4444231365 scopus 로고    scopus 로고
    • A survey of kernels for structured data
    • Gaertner, T.: A survey of kernels for structured data. SIGKDD Explorations 5(1), 49-58 (2003)
    • (2003) SIGKDD Explorations , vol.5 , Issue.1 , pp. 49-58
    • Gaertner, T.1
  • 32
    • 34547977978 scopus 로고    scopus 로고
    • Getoor, L, Taskar, B, eds, MIT Press, Cambridge, MA
    • Getoor, L., Taskar, B. (eds.): Statistical Relational Learning. MIT Press, Cambridge, MA (2007)
    • (2007) Statistical Relational Learning
  • 36
    • 0004019973 scopus 로고    scopus 로고
    • Convolution kernels on discrete structures. UC Santa Cruz
    • Technical Report UCS-CRL-99-10
    • Haussler, D.: Convolution kernels on discrete structures. UC Santa Cruz, Technical Report UCS-CRL-99-10 (1999)
    • (1999)
    • Haussler, D.1
  • 37
    • 0030284618 scopus 로고    scopus 로고
    • A database perspective on knowledge discovery
    • Imielinski, T., Mannila, H.: A database perspective on knowledge discovery. Communications of the ACM 39(11), 58-64 (1996)
    • (1996) Communications of the ACM , vol.39 , Issue.11 , pp. 58-64
    • Imielinski, T.1    Mannila, H.2
  • 39
    • 38449107061 scopus 로고    scopus 로고
    • A unifying framework for relational distance-based learning founded on relational algebra
    • Technical Report, Computer Science Department, University of Geneva
    • Kalousis, A., Woznica, A., Hilario, M.: A unifying framework for relational distance-based learning founded on relational algebra. Technical Report, Computer Science Department, University of Geneva (2006)
    • (2006)
    • Kalousis, A.1    Woznica, A.2    Hilario, M.3
  • 41
    • 0035006162 scopus 로고    scopus 로고
    • The utility of different representations of protein sequence for predicting functional class
    • King, R.D., Karwath, A., Clare, A., Dehaspe, L.: The utility of different representations of protein sequence for predicting functional class. Bioinformatics 17(5), 445-454 (2001)
    • (2001) Bioinformatics , vol.17 , Issue.5 , pp. 445-454
    • King, R.D.1    Karwath, A.2    Clare, A.3    Dehaspe, L.4
  • 42
    • 26944470583 scopus 로고    scopus 로고
    • Data mining tasks and methods: Subgroup discovery: deviation analysis
    • Kloesgen, W, Zytkow, J.M, eds, Oxford University Press, Oxford
    • Kloesgen, W.: Data mining tasks and methods: Subgroup discovery: deviation analysis. In: Kloesgen, W., Zytkow, J.M. (eds.) Handbook of Data Mining and Knowledge Discovery, pp. 354-361. Oxford University Press, Oxford (2002)
    • (2002) Handbook of Data Mining and Knowledge Discovery , pp. 354-361
    • Kloesgen, W.1
  • 43
    • 33745770648 scopus 로고    scopus 로고
    • Kramer, S., Aufschild, V., Hapfelmeier, A., Jarasch, A., Kessler, K., Reckow, S., Wicker, J., Richter, L.: Inductive Databases in the Relational Model: The Data as the Bridge. In: Bonchi, F., Boulicaut, J-F. (eds.) KDID 2005. LNCS, 3933, pp. 124-138. Springer, Heidelberg (2006)
    • Kramer, S., Aufschild, V., Hapfelmeier, A., Jarasch, A., Kessler, K., Reckow, S., Wicker, J., Richter, L.: Inductive Databases in the Relational Model: The Data as the Bridge. In: Bonchi, F., Boulicaut, J-F. (eds.) KDID 2005. LNCS, vol. 3933, pp. 124-138. Springer, Heidelberg (2006)
  • 48
    • 0344061898 scopus 로고
    • An introduction to deductive database systems
    • Lloyd, J.W.: An introduction to deductive database systems. Australian Computer Journal 15(2), 52-57 (1983)
    • (1983) Australian Computer Journal , vol.15 , Issue.2 , pp. 52-57
    • Lloyd, J.W.1
  • 51
    • 38449083510 scopus 로고    scopus 로고
    • Inductive databases vision: Relational operations on models. Unpublished slides. In: Presented at the meeting of the cInQ project (December 2001)
    • Inductive databases vision: Relational operations on models. Unpublished slides. In: Presented at the meeting of the cInQ project (December 2001)
  • 52
    • 21944442464 scopus 로고    scopus 로고
    • Levelwise search and borders of theories in knowledge discovery
    • Mannila, H., Toivonen, H.: Levelwise search and borders of theories in knowledge discovery. Data Mining and Knowledge Discovery 1(3), 241-258 (1997)
    • (1997) Data Mining and Knowledge Discovery , vol.1 , Issue.3 , pp. 241-258
    • Mannila, H.1    Toivonen, H.2
  • 53
    • 0019063015 scopus 로고
    • Knowledge acquisition through conceptual clustering: A theoretical framework and an algorithm for partitioning data into conjunctive concepts
    • Michalski, R.S.: Knowledge acquisition through conceptual clustering: A theoretical framework and an algorithm for partitioning data into conjunctive concepts. Intl. Jrnl. of Policy Analysis and Information Systems 4, 219-244 (1980)
    • (1980) Intl. Jrnl. of Policy Analysis and Information Systems , vol.4 , pp. 219-244
    • Michalski, R.S.1
  • 54
    • 0000531852 scopus 로고
    • Generalization as search
    • Mitchell, T.M.: Generalization as search. Artif. Intell. 18(2), 203-226 (1982)
    • (1982) Artif. Intell , vol.18 , Issue.2 , pp. 203-226
    • Mitchell, T.M.1
  • 57
    • 38449115814 scopus 로고    scopus 로고
    • Ramakrishnan, R., et al.: Data Mining: The Next Generation. In: Ramakrishnan, R., Agrawal, R., Freytag, J.-C. (eds.) Perspectives Wshp. - Data Mining: The Next Generation. Intl. Begegnungs- und Forschungszentrum fuer Informatik (IBFI), Schloss Dagstuhl, Germany (2005)
    • Ramakrishnan, R., et al.: Data Mining: The Next Generation. In: Ramakrishnan, R., Agrawal, R., Freytag, J.-C. (eds.) Perspectives Wshp. - Data Mining: The Next Generation. Intl. Begegnungs- und Forschungszentrum fuer Informatik (IBFI), Schloss Dagstuhl, Germany (2005)
  • 58
    • 0035402326 scopus 로고    scopus 로고
    • A polynomial time computable metric between point sets
    • Ramon, J., Bruynooghe, M.: A polynomial time computable metric between point sets. Acta Informatica 37(10), 765-780 (2001)
    • (2001) Acta Informatica , vol.37 , Issue.10 , pp. 765-780
    • Ramon, J.1    Bruynooghe, M.2
  • 60
    • 33745787494 scopus 로고    scopus 로고
    • Siebes, A.: Data mining in inductive databases. In: Bonchi, F., Boulicaut, J-F. (eds.) KDID 2005. LNCS, 3933, pp. 1-23. Springer, Heidelberg (2006)
    • Siebes, A.: Data mining in inductive databases. In: Bonchi, F., Boulicaut, J-F. (eds.) KDID 2005. LNCS, vol. 3933, pp. 1-23. Springer, Heidelberg (2006)
  • 61
    • 22644452635 scopus 로고    scopus 로고
    • Feature construction with inductive logic programming: A study of quantitative predictions of biological activity aided by structural attributes
    • Srinivasan, A., King, R.D.: Feature construction with inductive logic programming: A study of quantitative predictions of biological activity aided by structural attributes. Knowledge Discovery and Data Mining 3(1), 37-57 (1999)
    • (1999) Knowledge Discovery and Data Mining , vol.3 , Issue.1 , pp. 37-57
    • Srinivasan, A.1    King, R.D.2
  • 62
    • 33745775676 scopus 로고    scopus 로고
    • Struyf, J., Džeroski, S.: Constraint based induction of multi-objective regression trees. In: Bonchi, F., Boulicaut, J-F. (eds.) KDID 2005. LNCS, 3933, pp. 222-233. Springer, Heidelberg (2006)
    • Struyf, J., Džeroski, S.: Constraint based induction of multi-objective regression trees. In: Bonchi, F., Boulicaut, J-F. (eds.) KDID 2005. LNCS, vol. 3933, pp. 222-233. Springer, Heidelberg (2006)
  • 64
    • 38449083293 scopus 로고    scopus 로고
    • Thompson, S.: Haskell: The Craft of Functional Programming. Add. Wesley, Reading (1999)
    • Thompson, S.: Haskell: The Craft of Functional Programming. Add. Wesley, Reading (1999)
  • 66
    • 0036791948 scopus 로고    scopus 로고
    • A perspective view and survey of meta-learning
    • Vilalta, R., Drissi, Y.: A perspective view and survey of meta-learning. Artificial Intelligence Review 18(2), 77-95 (2002)
    • (2002) Artificial Intelligence Review , vol.18 , Issue.2 , pp. 77-95
    • Vilalta, R.1    Drissi, Y.2
  • 67
    • 85158080410 scopus 로고    scopus 로고
    • Clustering with instance-level constraints
    • Morgan Kaufmann, San Francisco, CA
    • Wagstaff, K., Cardie, C.: Clustering with instance-level constraints. In: Proc. 17th Intl. Conf. on Machine Learning, pp. 1103-1110. Morgan Kaufmann, San Francisco, CA (2000)
    • (2000) Proc. 17th Intl. Conf. on Machine Learning , pp. 1103-1110
    • Wagstaff, K.1    Cardie, C.2
  • 68
    • 33745799287 scopus 로고    scopus 로고
    • Kernels on lists and sets over relational algebra: An application to classification of protein fingerprints
    • Ng, W-K, Kitsuregawa, M, Li, J, Chang, K, eds, PAKDD 2006, Springer, Heidelberg
    • Woznica, A., Kalousis, A., Hilario, M.: Kernels on lists and sets over relational algebra: an application to classification of protein fingerprints. In: Ng, W-K., Kitsuregawa, M., Li, J., Chang, K. (eds.) PAKDD 2006. LNCS (LNAI), vol. 3918, pp. 546-551. Springer, Heidelberg (2006)
    • (2006) LNCS (LNAI , vol.3918 , pp. 546-551
    • Woznica, A.1    Kalousis, A.2    Hilario, M.3
  • 69
    • 33845501387 scopus 로고    scopus 로고
    • Yang, Q., Wu, X.: 10 Challenging problems in data mining research. Intl. Jrnl. of Information Technology & Decision Making 5(4), 597-604 (2006)
    • Yang, Q., Wu, X.: 10 Challenging problems in data mining research. Intl. Jrnl. of Information Technology & Decision Making 5(4), 597-604 (2006)
  • 70
    • 33745782072 scopus 로고    scopus 로고
    • Zenko, B., Džeroski, S., Struyf, J.: Learning predictive clustering rules. In: Bonchi, F., Boulicaut, J-F. (eds.) KDID 2005. LNCS, 3933, pp. 234-250. Springer, Heidelberg (2006)
    • Zenko, B., Džeroski, S., Struyf, J.: Learning predictive clustering rules. In: Bonchi, F., Boulicaut, J-F. (eds.) KDID 2005. LNCS, vol. 3933, pp. 234-250. Springer, Heidelberg (2006)


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.