메뉴 건너뛰기




Volumn 2534, Issue , 2002, Pages 141-152

Improved dataset characterisation for meta-learning

Author keywords

[No Author keywords available]

Indexed keywords

DECISION TREES;

EID: 84949799605     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/3-540-36182-0_14     Document Type: Conference Paper
Times cited : (116)

References (32)
  • 1
    • 0002976263 scopus 로고
    • Recursive automatic bias selection for classifier construction
    • C. E. Brodley. Recursive automatic bias selection for classifier construction. Machine Learning, 20:63-94, 1995.
    • (1995) Machine Learning , vol.20 , pp. 63-94
    • Brodley, C.E.1
  • 6
    • 0000259511 scopus 로고    scopus 로고
    • Approximate statistical tests for comparing supervised classification learning algorithms
    • T. G. Dietterich. Approximate statistical tests for comparing supervised classification learning algorithms. Neural Computation, 10(7):1895-1924, 1998.
    • (1998) Neural Computation , vol.10 , Issue.7 , pp. 1895-1924
    • Dietterich, T.G.1
  • 7
    • 12444258560 scopus 로고
    • Evaluation and Selection of Biases
    • E. Gordon, and M. desJardin. Evaluation and Selection of Biases. Machine Learning, 20(1-2):5-22, 1995.
    • (1995) Machine Learning , vol.20 , Issue.1-2 , pp. 5-22
    • Gordon, E.1    Desjardin, M.2
  • 10
    • 56349109865 scopus 로고    scopus 로고
    • Data characterisation for classification and regression on a meta-level
    • Antony Unwin, Adalbert Wilhelm, and Ulrike Hofmann, editors, Lyon, France
    • C. Koepf, C. Taylor, and J. Keller. Meta-analysis: Data characterisation for classification and regression on a meta-level. In Antony Unwin, Adalbert Wilhelm, and Ulrike Hofmann, editors, Proceedings of the International Symposium on Data Mining and Statistics, Lyon, France, (2000).
    • (2000) Proceedings of the International Symposium on Data Mining and Statistics
    • Koepf, C.1    Taylor, C.2    Meta-Analysis, J.K.3
  • 11
    • 85156137079 scopus 로고    scopus 로고
    • Scaling up the Accuracy of Naïve-bayes Classifier: A Decision Tree hybrid
    • R. Kohavi. Scaling up the Accuracy of Naïve-bayes Classifier: a Decision Tree hybrid. 2nd Int. Conf. on Knowledge Discovery and Data Mining, 202-207. (1996)
    • (1996) 2Nd Int. Conf. On Knowledge Discovery and Data Mining , pp. 202-207
    • Kohavi, R.1
  • 13
    • 0013151507 scopus 로고    scopus 로고
    • Support for Algorithm Selection with a CBR Approach
    • Workshop on Recent Advances in Meta-Learning and Future Work
    • C. Linder, and R. Studer. AST: Support for Algorithm Selection with a CBR Approach. Proceedings of the 16th International Conference on Machine Learning, Workshop on Recent Advances in Meta-Learning and Future Work. 1999.
    • (1999) Proceedings of the 16Th International Conference on Machine Learning
    • Linder, C.1    Ast, R.S.2
  • 16
    • 27144463192 scopus 로고    scopus 로고
    • On Comparing Classifiers: Pitfalls to Avoid and a Recommended Approach
    • S. Salzberg. On Comparing Classifiers: Pitfalls to Avoid and a Recommended Approach. Data Mining and Knowledge Discovery, 1:3, 317-327, 1997.
    • (1997) Data Mining and Knowledge Discovery , vol.1 , Issue.3 , pp. 317-327
    • Salzberg, S.1
  • 17
    • 0000245470 scopus 로고
    • Selecting a Claassification Methods by Cross Validation
    • C. Schaffer. Selecting a Claassification Methods by Cross Validation, Machine Learning, 13, 135-143,1993.
    • (1993) Machine Learning , vol.13 , pp. 135-143
    • Schaffer, C.1
  • 18
    • 0013372364 scopus 로고
    • Cross-validation, stacking and bi-level stacking: Meta-methods for classification learning
    • P. Cheeseman and R. W. Oldford, editors
    • C. Schaffer. Cross-validation, stacking and bi-level stacking: Meta-methods for classification learning. In P. Cheeseman and R. W. Oldford, editors, Selecting Models from Data: Artificial Intelligence and Statistics IV, 51-59, 1994.
    • (1994) Selecting Models from Data: Artificial Intelligence and Statistics IV , pp. 51-59
    • Schaffer, C.1
  • 20
    • 0001834468 scopus 로고
    • Inductive policy: The pragmatics of bias selection
    • F. Provost, and B. Buchanan. Inductive policy: The pragmatics of bias selection. Machine Learning, 20:35-61, 1995.
    • (1995) Machine Learning , vol.20 , pp. 35-61
    • Provost, F.1    Buchanan, B.2
  • 23
  • 25
    • 28344453227 scopus 로고    scopus 로고
    • Ranking Classification Algorithms on Past Performance
    • University of Porto
    • C. Soares. Ranking Classification Algorithms on Past Performance. Master’s Thesis, Faculty of Economics, University of Porto, 2000.
    • (2000) Master’s Thesis, Faculty of Economics
    • Soares, C.1
  • 27
    • 0033220832 scopus 로고    scopus 로고
    • Meta Analysis of Classification Algorithms for Pattern Recognition
    • S. Y. Sohn. Meta Analysis of Classification Algorithms for Pattern Recognition. IEEE Trans. on Pattern Analysis and Machine Intelligence, 21, 1137-1144, 1999.
    • (1999) IEEE Trans. On Pattern Analysis and Machine Intelligence , vol.21 , pp. 1137-1144
    • Sohn, S.Y.1
  • 29
    • 84949809862 scopus 로고
    • Applied Statistics for Business and Economics
    • A. Webster. Applied Statistics for Business and Economics, Richard D Irwin Inc, 779-784, 1992.
    • (1992) Richard D Irwin Inc , pp. 779-784
    • Webster, A.1
  • 30
    • 0000459353 scopus 로고    scopus 로고
    • The lack of a Priori Distinctions between Learning Algorithms
    • D. Wolpert. The lack of a Priori Distinctions between Learning Algorithms. Neural Computation, 8, 1341-1390, 1996.
    • (1996) Neural Computation , vol.8 , pp. 1341-1390
    • Wolpert, D.1
  • 31
    • 0000459352 scopus 로고    scopus 로고
    • The Existence of a Priori Distinctions between Learning Algorithms
    • D. Wolpert. The Existence of a Priori Distinctions between Learning Algorithms. Neural Computation, 8, 1391-1420, 1996.
    • (1996) Neural Computation , vol.8 , pp. 1391-1420
    • Wolpert, D.1
  • 32
    • 47349109338 scopus 로고    scopus 로고
    • God doesn’t always shave with Occam’s Razor - learning when and how to prune
    • Berlin, Germany
    • H. Bensusan. God doesn’t always shave with Occam’s Razor - learning when and how to prune. In Proceedigs of the 10th European Conference on Machine Learning, 119--124, Berlin, Germany, 1998.
    • (1998) Proceedigs of the 10Th European Conference on Machine Learning
    • Bensusan, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.