메뉴 건너뛰기




Volumn 12, Issue SUPPL.2, 2011, Pages

BNEAT: A Bayesian network method for detecting epistatic interactions in genome-wide association studies

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHM; ARTICLE; BAYES THEOREM; BAYESIAN LEARNING; BAYESIAN NETWORKS BASED EPISTATIC ASSOCIATION STUDIES; CONTROLLED STUDY; DISEASE MODEL; GENETIC ASSOCIATION; GENETIC EPISTASIS; GENOTYPE; HEREDITY; HUMAN; PROBABILITY; RETINA MACULA AGE RELATED DEGENERATION; SIMULATION; SINGLE NUCLEOTIDE POLYMORPHISM; VISUAL IMPAIRMENT; BIOLOGY; COMPARATIVE STUDY; COMPUTER GRAPHICS; COMPUTER PROGRAM; COMPUTER SIMULATION; GENE LOCUS; GENETICS; INTERNET; METHODOLOGY; REPRODUCIBILITY; RETINA MACULA DEGENERATION;

EID: 79960867202     PISSN: None     EISSN: 14712164     Source Type: Journal    
DOI: 10.1186/1471-2164-12-S2-S9     Document Type: Article
Times cited : (26)

References (41)
  • 1
    • 13144306071 scopus 로고    scopus 로고
    • Genome-wide association studies for common diseases and complex traits
    • Hirschhorn JN, Daly MJ. Genome-wide association studies for common diseases and complex traits. Nat Rev Genet 2005, 6:95-108.
    • (2005) Nat Rev Genet , vol.6 , pp. 95-108
    • Hirschhorn, J.N.1    Daly, M.J.2
  • 3
    • 13144265739 scopus 로고    scopus 로고
    • Genome-wide association studies: theoretical and practical concerns
    • 10.1038/nrg1522, 15716907
    • Wang WY, Barratt BJ, Clayton DG, Todd JA. Genome-wide association studies: theoretical and practical concerns. Nat Rev Genet 2005, 6:109-118. 10.1038/nrg1522, 15716907.
    • (2005) Nat Rev Genet , vol.6 , pp. 109-118
    • Wang, W.Y.1    Barratt, B.J.2    Clayton, D.G.3    Todd, J.A.4
  • 4
    • 67349166946 scopus 로고    scopus 로고
    • Detecting gene-gene interactions that underlie human diseases
    • 2872761, 19434077
    • Cordell HJ. Detecting gene-gene interactions that underlie human diseases. Nat Rev Genet 2009, 10:392-404. 2872761, 19434077.
    • (2009) Nat Rev Genet , vol.10 , pp. 392-404
    • Cordell, H.J.1
  • 5
    • 0036797562 scopus 로고    scopus 로고
    • Epistasis: what it means, what it doesn't mean, and statistical methods to detect it in humans
    • 10.1093/hmg/11.20.2463, 12351582
    • Cordell HJ. Epistasis: what it means, what it doesn't mean, and statistical methods to detect it in humans. Hum Mol Genet 2002, 11:2463-2468. 10.1093/hmg/11.20.2463, 12351582.
    • (2002) Hum Mol Genet , vol.11 , pp. 2463-2468
    • Cordell, H.J.1
  • 6
    • 33744937046 scopus 로고    scopus 로고
    • Machine learning for detecting gene-gene interactions: a review
    • 10.2165/00822942-200605020-00002, 16722772
    • McKinney BA, Reif DM, Ritchie MD, Moore JH. Machine learning for detecting gene-gene interactions: a review. Appl Bioinformatics 2006, 5:77-88. 10.2165/00822942-200605020-00002, 16722772.
    • (2006) Appl Bioinformatics , vol.5 , pp. 77-88
    • McKinney, B.A.1    Reif, D.M.2    Ritchie, M.D.3    Moore, J.H.4
  • 7
    • 33847059518 scopus 로고    scopus 로고
    • Detection of gene x gene interactions in genome-wide association studies of human population data
    • 10.1159/000099179, 17283436
    • Musani SK, Shriner D, Liu N, Feng R, Coffey CS, Yi N, Tiwari HK, Allison DB. Detection of gene x gene interactions in genome-wide association studies of human population data. Hum Hered 2007, 63:67-84. 10.1159/000099179, 17283436.
    • (2007) Hum Hered , vol.63 , pp. 67-84
    • Musani, S.K.1    Shriner, D.2    Liu, N.3    Feng, R.4    Coffey, C.S.5    Yi, N.6    Tiwari, H.K.7    Allison, D.B.8
  • 8
    • 0037433052 scopus 로고    scopus 로고
    • Multifactor dimensionality reduction software for detecting gene-gene and gene-environment interactions
    • Hahn LW, Ritchie MD, Moore JH. Multifactor dimensionality reduction software for detecting gene-gene and gene-environment interactions. Bioinformatics (Oxford, England) 2003, 19:376-382.
    • (2003) Bioinformatics (Oxford, England) , vol.19 , pp. 376-382
    • Hahn, L.W.1    Ritchie, M.D.2    Moore, J.H.3
  • 9
    • 33745599582 scopus 로고    scopus 로고
    • A flexible computational framework for detecting, characterizing, and interpreting statistical patterns of epistasis in genetic studies of human disease susceptibility
    • 10.1016/j.jtbi.2005.11.036, 16457852
    • Moore JH, Gilbert JC, Tsai CT, Chiang FT, Holden T, Barney N, White BC. A flexible computational framework for detecting, characterizing, and interpreting statistical patterns of epistasis in genetic studies of human disease susceptibility. Journal of theoretical biology 2006, 241:252-261. 10.1016/j.jtbi.2005.11.036, 16457852.
    • (2006) Journal of theoretical biology , vol.241 , pp. 252-261
    • Moore, J.H.1    Gilbert, J.C.2    Tsai, C.T.3    Chiang, F.T.4    Holden, T.5    Barney, N.6    White, B.C.7
  • 10
    • 0037310257 scopus 로고    scopus 로고
    • Power of multifactor dimensionality reduction for detecting gene-gene interactions in the presence of genotyping error, missing data, phenocopy, and genetic heterogeneity
    • 10.1002/gepi.10218, 12548676
    • Ritchie MD, Hahn LW, Moore JH. Power of multifactor dimensionality reduction for detecting gene-gene interactions in the presence of genotyping error, missing data, phenocopy, and genetic heterogeneity. Genetic epidemiology 2003, 24:150-157. 10.1002/gepi.10218, 12548676.
    • (2003) Genetic epidemiology , vol.24 , pp. 150-157
    • Ritchie, M.D.1    Hahn, L.W.2    Moore, J.H.3
  • 11
    • 0034973569 scopus 로고    scopus 로고
    • Multifactor-dimensionality reduction reveals high-order interactions among estrogen-metabolism genes in sporadic breast cancer
    • 10.1086/321276, 1226028, 11404819
    • Ritchie MD, Hahn LW, Roodi N, Bailey LR, Dupont WD, Parl FF, Moore JH. Multifactor-dimensionality reduction reveals high-order interactions among estrogen-metabolism genes in sporadic breast cancer. American journal of human genetics 2001, 69:138-147. 10.1086/321276, 1226028, 11404819.
    • (2001) American journal of human genetics , vol.69 , pp. 138-147
    • Ritchie, M.D.1    Hahn, L.W.2    Roodi, N.3    Bailey, L.R.4    Dupont, W.D.5    Parl, F.F.6    Moore, J.H.7
  • 12
    • 37249080278 scopus 로고    scopus 로고
    • Penalized logistic regression for detecting gene interactions
    • Park MY, Hastie T. Penalized logistic regression for detecting gene interactions. Biostatistics (Oxford, England) 2008, 9:30-50.
    • (2008) Biostatistics (Oxford, England) , vol.9 , pp. 30-50
    • Park, M.Y.1    Hastie, T.2
  • 14
    • 34548352849 scopus 로고    scopus 로고
    • Bayesian inference of epistatic interactions in case-control studies
    • 10.1038/ng2110, 17721534
    • Zhang Y, Liu JS. Bayesian inference of epistatic interactions in case-control studies. Nature genetics 2007, 39:1167-1173. 10.1038/ng2110, 17721534.
    • (2007) Nature genetics , vol.39 , pp. 1167-1173
    • Zhang, Y.1    Liu, J.S.2
  • 15
    • 16844366786 scopus 로고    scopus 로고
    • Genome-wide strategies for detecting multiple loci that influence complex diseases
    • 10.1038/ng1537, 15793588
    • Marchini J, Donnelly P, Cardon LR. Genome-wide strategies for detecting multiple loci that influence complex diseases. Nature genetics 2005, 37:413-417. 10.1038/ng1537, 15793588.
    • (2005) Nature genetics , vol.37 , pp. 413-417
    • Marchini, J.1    Donnelly, P.2    Cardon, L.R.3
  • 17
    • 60849093174 scopus 로고    scopus 로고
    • A random forest approach to the detection of epistatic interactions in case-control studies
    • 10.1186/1471-2105-10-S1-S65, 2648748, 19208169
    • Jiang R, Tang W, Wu X, Fu W. A random forest approach to the detection of epistatic interactions in case-control studies. BMC bioinformatics 2009, 10(Suppl 1):S65. 10.1186/1471-2105-10-S1-S65, 2648748, 19208169.
    • (2009) BMC bioinformatics , vol.10 , Issue.SUPPL. 1
    • Jiang, R.1    Tang, W.2    Wu, X.3    Fu, W.4
  • 18
    • 77952257916 scopus 로고    scopus 로고
    • A Markov blanket-based method for detecting causal SNPs in GWAS
    • 10.1186/1471-2105-11-S3-S5, 3040531, 21210984
    • Han B, Park M, Chen XW. A Markov blanket-based method for detecting causal SNPs in GWAS. BMC bioinformatics 2010, 11(Suppl 3):S5. 10.1186/1471-2105-11-S3-S5, 3040531, 21210984.
    • (2010) BMC bioinformatics , vol.11 , Issue.SUPPL. 3
    • Han, B.1    Park, M.2    Chen, X.W.3
  • 19
    • 0141990695 scopus 로고    scopus 로고
    • Theoretical and empirical analysis of ReliefF and RReliefF
    • Robnik-Šikonja M, Kononenko I. Theoretical and empirical analysis of ReliefF and RReliefF. Machine learning 2003, 53:23-69.
    • (2003) Machine learning , vol.53 , pp. 23-69
    • Robnik-Šikonja, M.1    Kononenko, I.2
  • 23
    • 0003576417 scopus 로고    scopus 로고
    • Model selection and multimodel inference a practical information-theoretic approach
    • New York: Springer, 2
    • Burnham KP, Anderson DR, Hussong Fund HM. Model selection and multimodel inference a practical information-theoretic approach. 2002, New York: Springer, 2.
    • (2002)
    • Burnham, K.P.1    Anderson, D.R.2    Hussong Fund, H.M.3
  • 24
    • 0003684449 scopus 로고    scopus 로고
    • The elements of statistical learning data mining, inference, and prediction
    • New York: Springer
    • Hastie T, Tibshirani R, Friedman JH. The elements of statistical learning data mining, inference, and prediction. 2001, New York: Springer.
    • (2001)
    • Hastie, T.1    Tibshirani, R.2    Friedman, J.H.3
  • 25
    • 33745622668 scopus 로고    scopus 로고
    • An effective structure learning method for constructing gene networks
    • Chen XW, Anantha G, Wang X. An effective structure learning method for constructing gene networks. Bioinformatics (Oxford, England) 2006, 22:1367-1374.
    • (2006) Bioinformatics (Oxford, England) , vol.22 , pp. 1367-1374
    • Chen, X.W.1    Anantha, G.2    Wang, X.3
  • 26
    • 70350314967 scopus 로고    scopus 로고
    • Improving Bayesian Network Structure Learning with Mutual Information-Based Node Ordering in the K2 Algorithm
    • Chen X-W, Anantha G, Lin X. Improving Bayesian Network Structure Learning with Mutual Information-Based Node Ordering in the K2 Algorithm. IEEE Trans on Knowl and Data Eng 2008, 20:628-640.
    • (2008) IEEE Trans on Knowl and Data Eng , vol.20 , pp. 628-640
    • Chen, X.-W.1    Anantha, G.2    Lin, X.3
  • 27
    • 0036567524 scopus 로고    scopus 로고
    • Learning Bayesian networks from data: an information-theory based approach
    • Cheng J, Greiner R, Kelly J, Bell D, Liu W. Learning Bayesian networks from data: an information-theory based approach. Artif Intell 2002, 137:43-90.
    • (2002) Artif Intell , vol.137 , pp. 43-90
    • Cheng, J.1    Greiner, R.2    Kelly, J.3    Bell, D.4    Liu, W.5
  • 28
    • 0003398906 scopus 로고    scopus 로고
    • Causality models, reasoning, and inference
    • Cambridge, U.K. ; New York: Cambridge University Press, 2
    • Pearl J. Causality models, reasoning, and inference. 2009, Cambridge, U.K. ; New York: Cambridge University Press, 2.
    • (2009)
    • Pearl, J.1
  • 29
    • 0003614273 scopus 로고    scopus 로고
    • Causation, prediction, and search
    • Cambridge, Mass.: MIT Press, 2
    • Spirtes P, Glymour CN, Scheines R. Causation, prediction, and search. 2000, Cambridge, Mass.: MIT Press, 2.
    • (2000)
    • Spirtes, P.1    Glymour, C.N.2    Scheines, R.3
  • 30
    • 34249761849 scopus 로고
    • Learning Bayesian Networks: The Combination of Knowledge and Statistical Data
    • Heckerman D, Geiger D, Chickering DM. Learning Bayesian Networks: The Combination of Knowledge and Statistical Data. Mach Learn 1995, 20:197-243.
    • (1995) Mach Learn , vol.20 , pp. 197-243
    • Heckerman, D.1    Geiger, D.2    Chickering, D.M.3
  • 31
    • 0016355478 scopus 로고
    • A new look at the statistical model identification
    • Akaike H. A new look at the statistical model identification. IEEE Transactions on Automatic Control 1974, 19:716-723.
    • (1974) IEEE Transactions on Automatic Control , vol.19 , pp. 716-723
    • Akaike, H.1
  • 32
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwarz G. Estimating the dimension of a model. The Annals of Statistics 1978, 6:461-464.
    • (1978) The Annals of Statistics , vol.6 , pp. 461-464
    • Schwarz, G.1
  • 33
    • 0000318553 scopus 로고
    • Stochastic Complexity and Modeling
    • Rissanen J. Stochastic Complexity and Modeling. The Annals of Statistics 1986, 14:1080-1100.
    • (1986) The Annals of Statistics , vol.14 , pp. 1080-1100
    • Rissanen, J.1
  • 34
    • 34249832377 scopus 로고
    • A Bayesian Method for the Induction of Probabilistic Networks from Data
    • Cooper GF, Herskovits E. A Bayesian Method for the Induction of Probabilistic Networks from Data. Mach Learn 1992, 9:309-347.
    • (1992) Mach Learn , vol.9 , pp. 309-347
    • Cooper, G.F.1    Herskovits, E.2
  • 35
    • 70649111792 scopus 로고    scopus 로고
    • Probabilistic graphical models principles and techniques
    • Cambridge, Mass.: MIT Press
    • Koller D, Friedman N. Probabilistic graphical models principles and techniques. 2009, Cambridge, Mass.: MIT Press.
    • (2009)
    • Koller, D.1    Friedman, N.2
  • 36
    • 12344259602 scopus 로고    scopus 로고
    • Advances to Bayesian network inference for generating causal networks from observational biological data
    • Yu J, Smith VA, Wang PP, Hartemink AJ, Jarvis ED. Advances to Bayesian network inference for generating causal networks from observational biological data. Bioinformatics (Oxford, England) 2004, 20:3594-3603.
    • (2004) Bioinformatics (Oxford, England) , vol.20 , pp. 3594-3603
    • Yu, J.1    Smith, V.A.2    Wang, P.P.3    Hartemink, A.J.4    Jarvis, E.D.5
  • 37
    • 33646107783 scopus 로고    scopus 로고
    • Large-Sample Learning of Bayesian Networks is NP-Hard
    • Chickering DM, Heckerman D, Meek C. Large-Sample Learning of Bayesian Networks is NP-Hard. J Mach Learn Res 2004, 5:1287-1330.
    • (2004) J Mach Learn Res , vol.5 , pp. 1287-1330
    • Chickering, D.M.1    Heckerman, D.2    Meek, C.3
  • 38
    • 0008564212 scopus 로고    scopus 로고
    • Learning Bayesian Belief Networks Based on the Minimum Description Length Principle: An Efficient Algorithm Using the B & B Technique
    • San Fransisco: Morgan Kaufmann, Lorenza Saitta
    • Suzuki J. Learning Bayesian Belief Networks Based on the Minimum Description Length Principle: An Efficient Algorithm Using the B & B Technique. Proceedings of 13th conference on machine learning: 3-6 July 1996; Bari, Italy 1996, 462-470. San Fransisco: Morgan Kaufmann, Lorenza Saitta.
    • (1996) Proceedings of 13th conference on machine learning: 3-6 July 1996; Bari, Italy , pp. 462-470
    • Suzuki, J.1
  • 40
    • 0033076357 scopus 로고    scopus 로고
    • Using Evolutionary Programming and Minimum Description Length Principle for Data Mining of Bayesian Networks
    • Wong ML, Lam W, Leung KS. Using Evolutionary Programming and Minimum Description Length Principle for Data Mining of Bayesian Networks. IEEE Trans Pattern Anal Mach Intell 1999, 21:174-178.
    • (1999) IEEE Trans Pattern Anal Mach Intell , vol.21 , pp. 174-178
    • Wong, M.L.1    Lam, W.2    Leung, K.S.3
  • 41
    • 0037266163 scopus 로고    scopus 로고
    • Improving Markov Chain Monte Carlo Model Search for Data Mining
    • Giudici P, Castelo R. Improving Markov Chain Monte Carlo Model Search for Data Mining. Machine learning 2003, 50:127-158.
    • (2003) Machine learning , vol.50 , pp. 127-158
    • Giudici, P.1    Castelo, R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.