-
1
-
-
13144306071
-
Genome-wide association studies for common diseases and complex traits
-
Hirschhorn JN, Daly MJ. Genome-wide association studies for common diseases and complex traits. Nat Rev Genet 2005, 6:95-108.
-
(2005)
Nat Rev Genet
, vol.6
, pp. 95-108
-
-
Hirschhorn, J.N.1
Daly, M.J.2
-
2
-
-
42349112088
-
Genome-wide association studies for complex traits: consensus, uncertainty and challenges
-
10.1038/nrg2344, 18398418
-
McCarthy MI, Abecasis GR, Cardon LR, Goldstein DB, Little J, Ioannidis JP, Hirschhorn JN. Genome-wide association studies for complex traits: consensus, uncertainty and challenges. Nat Rev Genet 2008, 9:356-369. 10.1038/nrg2344, 18398418.
-
(2008)
Nat Rev Genet
, vol.9
, pp. 356-369
-
-
McCarthy, M.I.1
Abecasis, G.R.2
Cardon, L.R.3
Goldstein, D.B.4
Little, J.5
Ioannidis, J.P.6
Hirschhorn, J.N.7
-
3
-
-
13144265739
-
Genome-wide association studies: theoretical and practical concerns
-
10.1038/nrg1522, 15716907
-
Wang WY, Barratt BJ, Clayton DG, Todd JA. Genome-wide association studies: theoretical and practical concerns. Nat Rev Genet 2005, 6:109-118. 10.1038/nrg1522, 15716907.
-
(2005)
Nat Rev Genet
, vol.6
, pp. 109-118
-
-
Wang, W.Y.1
Barratt, B.J.2
Clayton, D.G.3
Todd, J.A.4
-
4
-
-
67349166946
-
Detecting gene-gene interactions that underlie human diseases
-
2872761, 19434077
-
Cordell HJ. Detecting gene-gene interactions that underlie human diseases. Nat Rev Genet 2009, 10:392-404. 2872761, 19434077.
-
(2009)
Nat Rev Genet
, vol.10
, pp. 392-404
-
-
Cordell, H.J.1
-
5
-
-
0036797562
-
Epistasis: what it means, what it doesn't mean, and statistical methods to detect it in humans
-
10.1093/hmg/11.20.2463, 12351582
-
Cordell HJ. Epistasis: what it means, what it doesn't mean, and statistical methods to detect it in humans. Hum Mol Genet 2002, 11:2463-2468. 10.1093/hmg/11.20.2463, 12351582.
-
(2002)
Hum Mol Genet
, vol.11
, pp. 2463-2468
-
-
Cordell, H.J.1
-
6
-
-
33744937046
-
Machine learning for detecting gene-gene interactions: a review
-
10.2165/00822942-200605020-00002, 16722772
-
McKinney BA, Reif DM, Ritchie MD, Moore JH. Machine learning for detecting gene-gene interactions: a review. Appl Bioinformatics 2006, 5:77-88. 10.2165/00822942-200605020-00002, 16722772.
-
(2006)
Appl Bioinformatics
, vol.5
, pp. 77-88
-
-
McKinney, B.A.1
Reif, D.M.2
Ritchie, M.D.3
Moore, J.H.4
-
7
-
-
33847059518
-
Detection of gene x gene interactions in genome-wide association studies of human population data
-
10.1159/000099179, 17283436
-
Musani SK, Shriner D, Liu N, Feng R, Coffey CS, Yi N, Tiwari HK, Allison DB. Detection of gene x gene interactions in genome-wide association studies of human population data. Hum Hered 2007, 63:67-84. 10.1159/000099179, 17283436.
-
(2007)
Hum Hered
, vol.63
, pp. 67-84
-
-
Musani, S.K.1
Shriner, D.2
Liu, N.3
Feng, R.4
Coffey, C.S.5
Yi, N.6
Tiwari, H.K.7
Allison, D.B.8
-
8
-
-
0037433052
-
Multifactor dimensionality reduction software for detecting gene-gene and gene-environment interactions
-
Hahn LW, Ritchie MD, Moore JH. Multifactor dimensionality reduction software for detecting gene-gene and gene-environment interactions. Bioinformatics (Oxford, England) 2003, 19:376-382.
-
(2003)
Bioinformatics (Oxford, England)
, vol.19
, pp. 376-382
-
-
Hahn, L.W.1
Ritchie, M.D.2
Moore, J.H.3
-
9
-
-
33745599582
-
A flexible computational framework for detecting, characterizing, and interpreting statistical patterns of epistasis in genetic studies of human disease susceptibility
-
10.1016/j.jtbi.2005.11.036, 16457852
-
Moore JH, Gilbert JC, Tsai CT, Chiang FT, Holden T, Barney N, White BC. A flexible computational framework for detecting, characterizing, and interpreting statistical patterns of epistasis in genetic studies of human disease susceptibility. Journal of theoretical biology 2006, 241:252-261. 10.1016/j.jtbi.2005.11.036, 16457852.
-
(2006)
Journal of theoretical biology
, vol.241
, pp. 252-261
-
-
Moore, J.H.1
Gilbert, J.C.2
Tsai, C.T.3
Chiang, F.T.4
Holden, T.5
Barney, N.6
White, B.C.7
-
10
-
-
0037310257
-
Power of multifactor dimensionality reduction for detecting gene-gene interactions in the presence of genotyping error, missing data, phenocopy, and genetic heterogeneity
-
10.1002/gepi.10218, 12548676
-
Ritchie MD, Hahn LW, Moore JH. Power of multifactor dimensionality reduction for detecting gene-gene interactions in the presence of genotyping error, missing data, phenocopy, and genetic heterogeneity. Genetic epidemiology 2003, 24:150-157. 10.1002/gepi.10218, 12548676.
-
(2003)
Genetic epidemiology
, vol.24
, pp. 150-157
-
-
Ritchie, M.D.1
Hahn, L.W.2
Moore, J.H.3
-
11
-
-
0034973569
-
Multifactor-dimensionality reduction reveals high-order interactions among estrogen-metabolism genes in sporadic breast cancer
-
10.1086/321276, 1226028, 11404819
-
Ritchie MD, Hahn LW, Roodi N, Bailey LR, Dupont WD, Parl FF, Moore JH. Multifactor-dimensionality reduction reveals high-order interactions among estrogen-metabolism genes in sporadic breast cancer. American journal of human genetics 2001, 69:138-147. 10.1086/321276, 1226028, 11404819.
-
(2001)
American journal of human genetics
, vol.69
, pp. 138-147
-
-
Ritchie, M.D.1
Hahn, L.W.2
Roodi, N.3
Bailey, L.R.4
Dupont, W.D.5
Parl, F.F.6
Moore, J.H.7
-
12
-
-
37249080278
-
Penalized logistic regression for detecting gene interactions
-
Park MY, Hastie T. Penalized logistic regression for detecting gene interactions. Biostatistics (Oxford, England) 2008, 9:30-50.
-
(2008)
Biostatistics (Oxford, England)
, vol.9
, pp. 30-50
-
-
Park, M.Y.1
Hastie, T.2
-
13
-
-
62549115747
-
Genome-wide association analysis by lasso penalized logistic regression
-
Wu TT, Chen YF, Hastie T, Sobel E, Lange K. Genome-wide association analysis by lasso penalized logistic regression. Bioinformatics (Oxford, England) 2009, 25:714-721.
-
(2009)
Bioinformatics (Oxford, England)
, vol.25
, pp. 714-721
-
-
Wu, T.T.1
Chen, Y.F.2
Hastie, T.3
Sobel, E.4
Lange, K.5
-
14
-
-
34548352849
-
Bayesian inference of epistatic interactions in case-control studies
-
10.1038/ng2110, 17721534
-
Zhang Y, Liu JS. Bayesian inference of epistatic interactions in case-control studies. Nature genetics 2007, 39:1167-1173. 10.1038/ng2110, 17721534.
-
(2007)
Nature genetics
, vol.39
, pp. 1167-1173
-
-
Zhang, Y.1
Liu, J.S.2
-
15
-
-
16844366786
-
Genome-wide strategies for detecting multiple loci that influence complex diseases
-
10.1038/ng1537, 15793588
-
Marchini J, Donnelly P, Cardon LR. Genome-wide strategies for detecting multiple loci that influence complex diseases. Nature genetics 2005, 37:413-417. 10.1038/ng1537, 15793588.
-
(2005)
Nature genetics
, vol.37
, pp. 413-417
-
-
Marchini, J.1
Donnelly, P.2
Cardon, L.R.3
-
16
-
-
39649099379
-
A support vector machine approach for detecting gene-gene interaction
-
10.1002/gepi.20272, 17968988
-
Chen SH, Sun J, Dimitrov L, Turner AR, Adams TS, Meyers DA, Chang BL, Zheng SL, Gronberg H, Xu J, Hsu FC. A support vector machine approach for detecting gene-gene interaction. Genetic epidemiology 2008, 32:152-167. 10.1002/gepi.20272, 17968988.
-
(2008)
Genetic epidemiology
, vol.32
, pp. 152-167
-
-
Chen, S.H.1
Sun, J.2
Dimitrov, L.3
Turner, A.R.4
Adams, T.S.5
Meyers, D.A.6
Chang, B.L.7
Zheng, S.L.8
Gronberg, H.9
Xu, J.10
Hsu, F.C.11
-
17
-
-
60849093174
-
A random forest approach to the detection of epistatic interactions in case-control studies
-
10.1186/1471-2105-10-S1-S65, 2648748, 19208169
-
Jiang R, Tang W, Wu X, Fu W. A random forest approach to the detection of epistatic interactions in case-control studies. BMC bioinformatics 2009, 10(Suppl 1):S65. 10.1186/1471-2105-10-S1-S65, 2648748, 19208169.
-
(2009)
BMC bioinformatics
, vol.10
, Issue.SUPPL. 1
-
-
Jiang, R.1
Tang, W.2
Wu, X.3
Fu, W.4
-
18
-
-
77952257916
-
A Markov blanket-based method for detecting causal SNPs in GWAS
-
10.1186/1471-2105-11-S3-S5, 3040531, 21210984
-
Han B, Park M, Chen XW. A Markov blanket-based method for detecting causal SNPs in GWAS. BMC bioinformatics 2010, 11(Suppl 3):S5. 10.1186/1471-2105-11-S3-S5, 3040531, 21210984.
-
(2010)
BMC bioinformatics
, vol.11
, Issue.SUPPL. 3
-
-
Han, B.1
Park, M.2
Chen, X.W.3
-
19
-
-
0141990695
-
Theoretical and empirical analysis of ReliefF and RReliefF
-
Robnik-Šikonja M, Kononenko I. Theoretical and empirical analysis of ReliefF and RReliefF. Machine learning 2003, 53:23-69.
-
(2003)
Machine learning
, vol.53
, pp. 23-69
-
-
Robnik-Šikonja, M.1
Kononenko, I.2
-
21
-
-
20244380171
-
Complement factor H polymorphism in age-related macular degeneration
-
Klein RJ, Zeiss C, Chew EY, Tsai JY, Sackler RS, Haynes C, Henning AK, SanGiovanni JP, Mane SM, Mayne ST, et al. Complement factor H polymorphism in age-related macular degeneration. Science (New York, NY) 2005, 308:385-389.
-
(2005)
Science (New York, NY)
, vol.308
, pp. 385-389
-
-
Klein, R.J.1
Zeiss, C.2
Chew, E.Y.3
Tsai, J.Y.4
Sackler, R.S.5
Haynes, C.6
Henning, A.K.7
SanGiovanni, J.P.8
Mane, S.M.9
Mayne, S.T.10
-
22
-
-
0002219642
-
Learning Bayesian Network Structure from Massive Datasets: The ''Sparse Candidate'' Algorithm
-
San Fransisco:Morgan Kaufmann, Kathryn B. Laskey and Henri Prade
-
Friedman N, Nachman I, Pe'er D. Learning Bayesian Network Structure from Massive Datasets: The ''Sparse Candidate'' Algorithm. Proceedings of 15th Conference Conference on Uncertainty in Artificial Intelligence: 30 July -1August 1999; Stockholm, Sweden 1999, 206-215. San Fransisco:Morgan Kaufmann, Kathryn B. Laskey and Henri Prade.
-
(1999)
Proceedings of 15th Conference Conference on Uncertainty in Artificial Intelligence: 30 July -1August 1999; Stockholm, Sweden
, pp. 206-215
-
-
Friedman, N.1
Nachman, I.2
Pe'er, D.3
-
23
-
-
0003576417
-
Model selection and multimodel inference a practical information-theoretic approach
-
New York: Springer, 2
-
Burnham KP, Anderson DR, Hussong Fund HM. Model selection and multimodel inference a practical information-theoretic approach. 2002, New York: Springer, 2.
-
(2002)
-
-
Burnham, K.P.1
Anderson, D.R.2
Hussong Fund, H.M.3
-
24
-
-
0003684449
-
The elements of statistical learning data mining, inference, and prediction
-
New York: Springer
-
Hastie T, Tibshirani R, Friedman JH. The elements of statistical learning data mining, inference, and prediction. 2001, New York: Springer.
-
(2001)
-
-
Hastie, T.1
Tibshirani, R.2
Friedman, J.H.3
-
25
-
-
33745622668
-
An effective structure learning method for constructing gene networks
-
Chen XW, Anantha G, Wang X. An effective structure learning method for constructing gene networks. Bioinformatics (Oxford, England) 2006, 22:1367-1374.
-
(2006)
Bioinformatics (Oxford, England)
, vol.22
, pp. 1367-1374
-
-
Chen, X.W.1
Anantha, G.2
Wang, X.3
-
26
-
-
70350314967
-
Improving Bayesian Network Structure Learning with Mutual Information-Based Node Ordering in the K2 Algorithm
-
Chen X-W, Anantha G, Lin X. Improving Bayesian Network Structure Learning with Mutual Information-Based Node Ordering in the K2 Algorithm. IEEE Trans on Knowl and Data Eng 2008, 20:628-640.
-
(2008)
IEEE Trans on Knowl and Data Eng
, vol.20
, pp. 628-640
-
-
Chen, X.-W.1
Anantha, G.2
Lin, X.3
-
27
-
-
0036567524
-
Learning Bayesian networks from data: an information-theory based approach
-
Cheng J, Greiner R, Kelly J, Bell D, Liu W. Learning Bayesian networks from data: an information-theory based approach. Artif Intell 2002, 137:43-90.
-
(2002)
Artif Intell
, vol.137
, pp. 43-90
-
-
Cheng, J.1
Greiner, R.2
Kelly, J.3
Bell, D.4
Liu, W.5
-
28
-
-
0003398906
-
Causality models, reasoning, and inference
-
Cambridge, U.K. ; New York: Cambridge University Press, 2
-
Pearl J. Causality models, reasoning, and inference. 2009, Cambridge, U.K. ; New York: Cambridge University Press, 2.
-
(2009)
-
-
Pearl, J.1
-
29
-
-
0003614273
-
Causation, prediction, and search
-
Cambridge, Mass.: MIT Press, 2
-
Spirtes P, Glymour CN, Scheines R. Causation, prediction, and search. 2000, Cambridge, Mass.: MIT Press, 2.
-
(2000)
-
-
Spirtes, P.1
Glymour, C.N.2
Scheines, R.3
-
30
-
-
34249761849
-
Learning Bayesian Networks: The Combination of Knowledge and Statistical Data
-
Heckerman D, Geiger D, Chickering DM. Learning Bayesian Networks: The Combination of Knowledge and Statistical Data. Mach Learn 1995, 20:197-243.
-
(1995)
Mach Learn
, vol.20
, pp. 197-243
-
-
Heckerman, D.1
Geiger, D.2
Chickering, D.M.3
-
31
-
-
0016355478
-
A new look at the statistical model identification
-
Akaike H. A new look at the statistical model identification. IEEE Transactions on Automatic Control 1974, 19:716-723.
-
(1974)
IEEE Transactions on Automatic Control
, vol.19
, pp. 716-723
-
-
Akaike, H.1
-
32
-
-
0000120766
-
Estimating the dimension of a model
-
Schwarz G. Estimating the dimension of a model. The Annals of Statistics 1978, 6:461-464.
-
(1978)
The Annals of Statistics
, vol.6
, pp. 461-464
-
-
Schwarz, G.1
-
33
-
-
0000318553
-
Stochastic Complexity and Modeling
-
Rissanen J. Stochastic Complexity and Modeling. The Annals of Statistics 1986, 14:1080-1100.
-
(1986)
The Annals of Statistics
, vol.14
, pp. 1080-1100
-
-
Rissanen, J.1
-
34
-
-
34249832377
-
A Bayesian Method for the Induction of Probabilistic Networks from Data
-
Cooper GF, Herskovits E. A Bayesian Method for the Induction of Probabilistic Networks from Data. Mach Learn 1992, 9:309-347.
-
(1992)
Mach Learn
, vol.9
, pp. 309-347
-
-
Cooper, G.F.1
Herskovits, E.2
-
35
-
-
70649111792
-
Probabilistic graphical models principles and techniques
-
Cambridge, Mass.: MIT Press
-
Koller D, Friedman N. Probabilistic graphical models principles and techniques. 2009, Cambridge, Mass.: MIT Press.
-
(2009)
-
-
Koller, D.1
Friedman, N.2
-
36
-
-
12344259602
-
Advances to Bayesian network inference for generating causal networks from observational biological data
-
Yu J, Smith VA, Wang PP, Hartemink AJ, Jarvis ED. Advances to Bayesian network inference for generating causal networks from observational biological data. Bioinformatics (Oxford, England) 2004, 20:3594-3603.
-
(2004)
Bioinformatics (Oxford, England)
, vol.20
, pp. 3594-3603
-
-
Yu, J.1
Smith, V.A.2
Wang, P.P.3
Hartemink, A.J.4
Jarvis, E.D.5
-
37
-
-
33646107783
-
Large-Sample Learning of Bayesian Networks is NP-Hard
-
Chickering DM, Heckerman D, Meek C. Large-Sample Learning of Bayesian Networks is NP-Hard. J Mach Learn Res 2004, 5:1287-1330.
-
(2004)
J Mach Learn Res
, vol.5
, pp. 1287-1330
-
-
Chickering, D.M.1
Heckerman, D.2
Meek, C.3
-
38
-
-
0008564212
-
Learning Bayesian Belief Networks Based on the Minimum Description Length Principle: An Efficient Algorithm Using the B & B Technique
-
San Fransisco: Morgan Kaufmann, Lorenza Saitta
-
Suzuki J. Learning Bayesian Belief Networks Based on the Minimum Description Length Principle: An Efficient Algorithm Using the B & B Technique. Proceedings of 13th conference on machine learning: 3-6 July 1996; Bari, Italy 1996, 462-470. San Fransisco: Morgan Kaufmann, Lorenza Saitta.
-
(1996)
Proceedings of 13th conference on machine learning: 3-6 July 1996; Bari, Italy
, pp. 462-470
-
-
Suzuki, J.1
-
40
-
-
0033076357
-
Using Evolutionary Programming and Minimum Description Length Principle for Data Mining of Bayesian Networks
-
Wong ML, Lam W, Leung KS. Using Evolutionary Programming and Minimum Description Length Principle for Data Mining of Bayesian Networks. IEEE Trans Pattern Anal Mach Intell 1999, 21:174-178.
-
(1999)
IEEE Trans Pattern Anal Mach Intell
, vol.21
, pp. 174-178
-
-
Wong, M.L.1
Lam, W.2
Leung, K.S.3
-
41
-
-
0037266163
-
Improving Markov Chain Monte Carlo Model Search for Data Mining
-
Giudici P, Castelo R. Improving Markov Chain Monte Carlo Model Search for Data Mining. Machine learning 2003, 50:127-158.
-
(2003)
Machine learning
, vol.50
, pp. 127-158
-
-
Giudici, P.1
Castelo, R.2
|