메뉴 건너뛰기




Volumn , Issue , 2007, Pages 844-851

Semi-supervised single-label text categorization using centroid-based classifiers

Author keywords

Centroid based models; Online learning; Semi supervised learning; Single label text categorization

Indexed keywords

CLASSIFICATION (OF INFORMATION); DATA STRUCTURES; DISTANCE EDUCATION; ONLINE SYSTEMS; OPTIMIZATION; SUPERVISED LEARNING;

EID: 35248840423     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1244002.1244189     Document Type: Conference Paper
Times cited : (38)

References (23)
  • 3
    • 35248843385 scopus 로고    scopus 로고
    • Empirical evaluation of centroid-based models for single-label text categorization
    • Technical Report 7/2006, INESC-ID, June
    • A. Cardoso-Cachopo and A. Oliveira. Empirical evaluation of centroid-based models for single-label text categorization. Technical Report 7/2006, INESC-ID, June 2006.
    • (2006)
    • Cardoso-Cachopo, A.1    Oliveira, A.2
  • 5
    • 0001345686 scopus 로고    scopus 로고
    • Context-sensitive learning methods for text categorization
    • W. Cohen and Y. Singer. Context-sensitive learning methods for text categorization. ACM Transactions on Information Systems, 17(2): 141-173, 1999.
    • (1999) ACM Transactions on Information Systems , vol.17 , Issue.2 , pp. 141-173
    • Cohen, W.1    Singer, Y.2
  • 11
    • 0002409860 scopus 로고    scopus 로고
    • A probabilistic analysis of the Rocchio algorithm with TFIDF for text categorization
    • Morgan Kaufmann Publishers
    • T. Joachims. A probabilistic analysis of the Rocchio algorithm with TFIDF for text categorization. In Proceedings of ICML-97, 14th International Conference on Machine Learning, pages 143-151. Morgan Kaufmann Publishers, 1997.
    • (1997) Proceedings of ICML-97, 14th International Conference on Machine Learning , pp. 143-151
    • Joachims, T.1
  • 12
    • 84957069814 scopus 로고    scopus 로고
    • Text categorization with support vector machines: Learning with many relevant features
    • Springer Verlag
    • T. Joachims. Text categorization with support vector machines: learning with many relevant features. In Proceedings of ECML-98, 10th European Conference on Machine Learning, pages 137-142. Springer Verlag, 1998.
    • (1998) Proceedings of ECML-98, 10th European Conference on Machine Learning , pp. 137-142
    • Joachims, T.1
  • 13
    • 0242692521 scopus 로고    scopus 로고
    • Effect of term distributions on centroid-based text categorization
    • V. Lertnattee and T. Theeramunkong. Effect of term distributions on centroid-based text categorization. Information Sciences, 158(1):89-115, 2004.
    • (2004) Information Sciences , vol.158 , Issue.1 , pp. 89-115
    • Lertnattee, V.1    Theeramunkong, T.2
  • 16
    • 84898980291 scopus 로고    scopus 로고
    • A mixture of experts classifier with learning based on both labelled and unlabelled data
    • MIT Press
    • D. Miller and H. Uyar. A mixture of experts classifier with learning based on both labelled and unlabelled data. In Advances in Neural Information Processing Systems, volume 9, pages 571-577. MIT Press, 1997.
    • (1997) Advances in Neural Information Processing Systems , vol.9 , pp. 571-577
    • Miller, D.1    Uyar, H.2
  • 17
    • 0033886806 scopus 로고    scopus 로고
    • Text classification from labeled and unlabeled documents using EM
    • K. Nigam, A. McCallum, S. Thrun, and T. Mitchell. Text classification from labeled and unlabeled documents using EM. Machine Learning, 39(2/3):103-134, 2000.
    • (2000) Machine Learning , vol.39 , Issue.2-3 , pp. 103-134
    • Nigam, K.1    McCallum, A.2    Thrun, S.3    Mitchell, T.4
  • 20
    • 0002442796 scopus 로고    scopus 로고
    • Machine learning in automated text categorization
    • F. Sebastiani. Machine learning in automated text categorization. ACM Computing Surveys, 34(1):1-47, 2002.
    • (2002) ACM Computing Surveys , vol.34 , Issue.1 , pp. 1-47
    • Sebastiani, F.1
  • 21
    • 0028499630 scopus 로고
    • The effect of unlabeled samples in reducing the small sample size problem and mitigating the Hughes Phenomenon
    • B. Shahshahani and D. Landgrebe. The effect of unlabeled samples in reducing the small sample size problem and mitigating the Hughes Phenomenon. IEEE Transactions on Geoscience and Remote Sensing, 32(5):1087-1095, 1994.
    • (1994) IEEE Transactions on Geoscience and Remote Sensing , vol.32 , Issue.5 , pp. 1087-1095
    • Shahshahani, B.1    Landgrebe, D.2
  • 22
    • 35248897825 scopus 로고    scopus 로고
    • S. Shankar and G. Karypis. Weight adjustment schemes for a centroid based classifier, 2000. Computer Science Technical Report TR00-035, Department of Computer Science, University of Minnesota, Minneapolis, Minnesota.
    • S. Shankar and G. Karypis. Weight adjustment schemes for a centroid based classifier, 2000. Computer Science Technical Report TR00-035, Department of Computer Science, University of Minnesota, Minneapolis, Minnesota.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.