-
1
-
-
20644436473
-
Key challenges in proteomics and proteoinformatics. Progress in proteins
-
M. Hamady, T.H. Cheung, K. Resing, K.J. Cios and R. Knight, Key challenges in proteomics and proteoinformatics. Progress in proteins, IEEE Eng. Med Biol. Mag. 24(3) (2005), 34-40.
-
(2005)
IEEE Eng. Med Biol. Mag
, vol.24
, Issue.3
, pp. 34-40
-
-
Hamady, M.1
Cheung, T.H.2
Resing, K.3
Cios, K.J.4
Knight, R.5
-
2
-
-
0034069495
-
Gene ontology: Tool for the unification of biology. The Gene Ontology Consortium
-
M. Ashburner, C.A. Ball, J.A. Blake, D. Botstein, H. Butler, J.M. Cherry, A.P. Davis, K. Dolinski, S.S. Dwight, J.T. Eppig, M.A. Harris, D.P. Hill, L. Issel-Tarver, A. Kasarskis, S. Lewis, J.C. Matese, J.E. Richardson, M. Ringwald, G.M. Rubin and G. Sherlock, Gene ontology: tool for the unification of biology. The Gene Ontology Consortium., Nat. Gen. 25(1) (2000), 25-29.
-
(2000)
Nat. Gen
, vol.25
, Issue.1
, pp. 25-29
-
-
Ashburner, M.1
Ball, C.A.2
Blake, J.A.3
Botstein, D.4
Butler, H.5
Cherry, J.M.6
Davis, A.P.7
Dolinski, K.8
Dwight, S.S.9
Eppig, J.T.10
Harris, M.A.11
Hill, D.P.12
Issel-Tarver, L.13
Kasarskis, A.14
Lewis, S.15
Matese, J.C.16
Richardson, J.E.17
Ringwald, M.18
Rubin, G.M.19
Sherlock, G.20
more..
-
3
-
-
33749252873
-
-
The MIT Press, Cambridge, MA
-
O. Chapelle, B. Scholkopf and A. Zien, Semi-Supervised Learning, The MIT Press, Cambridge, MA, 2006.
-
(2006)
Semi-Supervised Learning
-
-
Chapelle, O.1
Scholkopf, B.2
Zien, A.3
-
4
-
-
34548832558
-
ngLOC: An n-gram-based Bayesian mediod for estimating the subcellular proteomes of eukaryotes
-
B.R. King and C. Guda, ngLOC: an n-gram-based Bayesian mediod for estimating the subcellular proteomes of eukaryotes, Gen. Biol. 8(5) (2007), R68.
-
(2007)
Gen. Biol
, vol.8
, Issue.5
-
-
King, B.R.1
Guda, C.2
-
5
-
-
0033886806
-
Text classification from labeled and unlabeled documents using EM
-
K. Nigam, A.K. McCallum, S. Thrun and T. Mitchell, Text classification from labeled and unlabeled documents using EM, Mach. Learn. 39(2/3) (2000), 103-134.
-
(2000)
Mach. Learn
, vol.39
, Issue.2-3
, pp. 103-134
-
-
Nigam, K.1
McCallum, A.K.2
Thrun, S.3
Mitchell, T.4
-
6
-
-
33750027607
-
Semi-supervised text classification using EM
-
O. Chapelle, B. Scholkopf and A. Zien, eds, The MIT Press, Cambridge, MA
-
K. Nigam, A.K. McCallum and T. Mitchell, Semi-supervised text classification using EM, in: Semi-Supervised Learning, O. Chapelle, B. Scholkopf and A. Zien, eds, The MIT Press, Cambridge, MA, 2006, pp. 33-54.
-
(2006)
Semi-Supervised Learning
, pp. 33-54
-
-
Nigam, K.1
McCallum, A.K.2
Mitchell, T.3
-
7
-
-
0001938951
-
Transductive inference for text classification using support vector machines
-
Bled, Slovenia, June 27-30
-
T. Joachims, Transductive inference for text classification using support vector machines, in: Proceedings of the Sixteenth International Conference on Machine Learning (ICML 1999), Bled, Slovenia, June 27-30, 1999, pp. 200-209.
-
(1999)
Proceedings of the Sixteenth International Conference on Machine Learning (ICML 1999)
, pp. 200-209
-
-
Joachims, T.1
-
8
-
-
0038141205
-
Classification schemes for protein structure and function
-
C.A. Ouzounis, R.M. Coulson, A.J. Enright, V. Kunin and J.B. Pereira-Leal, Classification schemes for protein structure and function, Nat. Rev. 4(7) (2003), 508-519.
-
(2003)
Nat. Rev
, vol.4
, Issue.7
, pp. 508-519
-
-
Ouzounis, C.A.1
Coulson, R.M.2
Enright, A.J.3
Kunin, V.4
Pereira-Leal, J.B.5
-
9
-
-
0025183708
-
Basic local alignment search, tool
-
S.F. Altschul, W. Gish, W. Miller, E.W. Myers and D.J. Lipman, Basic local alignment search, tool, J. Mol. Biol. 215(3) (1990), 403-410.
-
(1990)
J. Mol. Biol
, vol.215
, Issue.3
, pp. 403-410
-
-
Altschul, S.F.1
Gish, W.2
Miller, W.3
Myers, E.W.4
Lipman, D.J.5
-
10
-
-
0027968068
-
CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice
-
J.D. Thompson, D.O. Higgins and T.J. Gibson, CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice, Nucleic Acids Res. 22(22) (1994), 4673-4680.
-
(1994)
Nucleic Acids Res
, vol.22
, Issue.22
, pp. 4673-4680
-
-
Thompson, J.D.1
Higgins, D.O.2
Gibson, T.J.3
-
11
-
-
0032509105
-
Sequence comparisons using multiple sequences detect three times as many remote homologues as pairwise methods
-
J. Park, K. Karplus, C. Barrett, R. Hughey, D. Haussler, T. Hubbard and C. Chothia, Sequence comparisons using multiple sequences detect three times as many remote homologues as pairwise methods, J. Mol. Biol. 284(4) (1998), 1201-1210.
-
(1998)
J. Mol. Biol
, vol.284
, Issue.4
, pp. 1201-1210
-
-
Park, J.1
Karplus, K.2
Barrett, C.3
Hughey, R.4
Haussler, D.5
Hubbard, T.6
Chothia, C.7
-
12
-
-
0028181441
-
Hidden Markov models in computational biology. Applications to protein modeling
-
A. Krogh, M. Brown, I.S. Mian, K. Sjolander and D. Haussler, Hidden Markov models in computational biology. Applications to protein modeling, J. Mol. Biol. 235(5) (1994), 1501-1531.
-
(1994)
J. Mol. Biol
, vol.235
, Issue.5
, pp. 1501-1531
-
-
Krogh, A.1
Brown, M.2
Mian, I.S.3
Sjolander, K.4
Haussler, D.5
-
14
-
-
59549087165
-
On discriminative vs. generative classifiers: A comparison of logistic regression, and naive Bayes
-
The MIT Press, Cambridge, MA
-
A.Y. Ng and M.J. Jordan, On discriminative vs. generative classifiers: A comparison of logistic regression, and naive Bayes, in: Advances in Neural Information Processing Systems, Vol. 14, The MIT Press, Cambridge, MA, 2002.
-
(2002)
Advances in Neural Information Processing Systems
, vol.14
-
-
Ng, A.Y.1
Jordan, M.J.2
-
15
-
-
0034048878
-
A discriminative framework for detecting remote protein homologies
-
T. Jaakkola, M. Diekhans and D. Haussler, A discriminative framework for detecting remote protein homologies, J. Comput. Biol. 7(1/2) (2000), 95-114.
-
(2000)
J. Comput. Biol
, vol.7
, Issue.1-2
, pp. 95-114
-
-
Jaakkola, T.1
Diekhans, M.2
Haussler, D.3
-
16
-
-
0034843744
-
Support vector machine approach for protein subcellular localization prediction
-
S. Hua and Z. Sun, Support vector machine approach for protein subcellular localization prediction, Bioinformatics 17(8) (2001), 721-728.
-
(2001)
Bioinformatics
, vol.17
, Issue.8
, pp. 721-728
-
-
Hua, S.1
Sun, Z.2
-
17
-
-
0034602774
-
Knowledge-based analysis of microarray gene expression data by using support vector machines
-
M.P.S. Brown, W.N. Grundy, D. Lin, N. Cristianini, C.W. Sugnet, T.S. Furey, M. Ares and D. Haussler, Knowledge-based analysis of microarray gene expression data by using support vector machines, Proc. Natl. Acad. Sci. 97(1) (2000), 262-267.
-
(2000)
Proc. Natl. Acad. Sci
, vol.97
, Issue.1
, pp. 262-267
-
-
Brown, M.P.S.1
Grundy, W.N.2
Lin, D.3
Cristianini, N.4
Sugnet, C.W.5
Furey, T.S.6
Ares, M.7
Haussler, D.8
-
18
-
-
0027291015
-
Prediction of protein secondary structure at better than 70% accuracy
-
B. Rost and C. Sander, Prediction of protein secondary structure at better than 70% accuracy, J. Mol. Biol. 232(2) (1993), 584-599.
-
(1993)
J. Mol. Biol
, vol.232
, Issue.2
, pp. 584-599
-
-
Rost, B.1
Sander, C.2
-
19
-
-
0033492988
-
Decision tree-based formation of consensus protein secondary structure prediction
-
J. Selbig, T. Mevissen and T. Lengauer, Decision tree-based formation of consensus protein secondary structure prediction, Bioinformatics 15(12) (1999), 1039-1046.
-
(1999)
Bioinformatics
, vol.15
, Issue.12
, pp. 1039-1046
-
-
Selbig, J.1
Mevissen, T.2
Lengauer, T.3
-
20
-
-
0035910270
-
Predicting transmembrane protein topology with a hidden Markov model: Application to complete genomes
-
A. Krogh, B. Larsson, G. von Heijne and E.L. Sonnhammer, Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes, J. Mol. Biol. 305(3) (2001), 567-580.
-
(2001)
J. Mol. Biol
, vol.305
, Issue.3
, pp. 567-580
-
-
Krogh, A.1
Larsson, B.2
von Heijne, G.3
Sonnhammer, E.L.4
-
21
-
-
13944255457
-
Protein classification based on text document classification techniques
-
B.Y. Cheng, J.G. Carbonell and J. Klein-Seetharaman, Protein classification based on text document classification techniques, Proteins 58(4) (2005), 955-970.
-
(2005)
Proteins
, vol.58
, Issue.4
, pp. 955-970
-
-
Cheng, B.Y.1
Carbonell, J.G.2
Klein-Seetharaman, J.3
-
22
-
-
2442687039
-
Combining text mining and sequence analysis to discover protein functional regions
-
Hawaii, January 6-10
-
E. Eskin and E. Agichtein, Combining text mining and sequence analysis to discover protein functional regions, in: Proceedings of the 9th Pacific Symposium on Biocomputing, Hawaii, January 6-10, 2004, pp. 288-299.
-
(2004)
Proceedings of the 9th Pacific Symposium on Biocomputing
, pp. 288-299
-
-
Eskin, E.1
Agichtein, E.2
-
23
-
-
39049189808
-
Significantly improved prediction of subcellular localization by integrating text and protein sequence data
-
A. Hoglund, T. Blum, S. Brady, P. Donnes, J.S. Miguel, M. Rocheford, O. Kohlbacher and H. Shatkay, Significantly improved prediction of subcellular localization by integrating text and protein sequence data, in: Pacific Symposium on Biocomputing, 2006, pp. 16-27.
-
(2006)
Pacific Symposium on Biocomputing
, pp. 16-27
-
-
Hoglund, A.1
Blum, T.2
Brady, S.3
Donnes, P.4
Miguel, J.S.5
Rocheford, M.6
Kohlbacher, O.7
Shatkay, H.8
-
24
-
-
0346799108
-
Prediction of protein function from protein sequence and structure
-
J.C. Whisstock and A.M. Lesk, Prediction of protein function from protein sequence and structure, Quart. Rev. Biophys. 36(3) (2003), 307-340.
-
(2003)
Quart. Rev. Biophys
, vol.36
, Issue.3
, pp. 307-340
-
-
Whisstock, J.C.1
Lesk, A.M.2
-
25
-
-
84899033220
-
Kernel expansions with unlabeled examples
-
M. Szummer and T. Jaakkola, Kernel expansions with unlabeled examples, Adv. Neur. Inf. Proc. Syst. 13 (2001), 626-632.
-
(2001)
Adv. Neur. Inf. Proc. Syst
, vol.13
, pp. 626-632
-
-
Szummer, M.1
Jaakkola, T.2
-
27
-
-
50649084677
-
Cluster kernels for semi-supervised learning
-
S. Becker, S. Thrun and K. Obermayer, eds, The MIT Press, Cambridge, MA
-
O. Chapelle, J. Weston and B. Scholkopf, Cluster kernels for semi-supervised learning, in: Advances in Neural Information Processing Systems, Vol. 15, S. Becker, S. Thrun and K. Obermayer, eds, The MIT Press, Cambridge, MA, 2003, pp. 585-592.
-
(2003)
Advances in Neural Information Processing Systems
, vol.15
, pp. 585-592
-
-
Chapelle, O.1
Weston, J.2
Scholkopf, B.3
-
28
-
-
25144481906
-
Semi-supervised protein classification using cluster kernels
-
J. Weston, C. Leslie, E. Ie, D. Zhou, A. Elisseeff and W.S. Noble, Semi-supervised protein classification using cluster kernels, Bioinformatics 21(15) (2005), 3241-3247.
-
(2005)
Bioinformatics
, vol.21
, Issue.15
, pp. 3241-3247
-
-
Weston, J.1
Leslie, C.2
Ie, E.3
Zhou, D.4
Elisseeff, A.5
Noble, W.S.6
-
29
-
-
35048818988
-
Semi-supervised protein classification using cluster kernels
-
S. Thrun, S. Saul and B. Scholkopf, eds, The MIT Press, Cambridge, MA
-
J. Weston, C. Leslie, D. Zhou, A. Elisseeff and W.S. Noble, Semi-supervised protein classification using cluster kernels, in: Advances in Neural Information Processing Systems (NIPS-2003), S. Thrun, S. Saul and B. Scholkopf, eds, The MIT Press, Cambridge, MA, 2004.
-
(2004)
Advances in Neural Information Processing Systems (NIPS-2003)
-
-
Weston, J.1
Leslie, C.2
Zhou, D.3
Elisseeff, A.4
Noble, W.S.5
-
31
-
-
34248344212
-
Interactive semisupervised learning for microarray analysis, IEEE/ACM Trans
-
Y. Lu, Q. Tian, F. Liu, M. Sanchez and Y. Wang, Interactive semisupervised learning for microarray analysis, IEEE/ACM Trans. Comput. Biol. Bioinf. 4(2) (2007), 190-203.
-
(2007)
Comput. Biol. Bioinf
, vol.4
, Issue.2
, pp. 190-203
-
-
Lu, Y.1
Tian, Q.2
Liu, F.3
Sanchez, M.4
Wang, Y.5
-
32
-
-
42249087646
-
Transductive inference and semi-supervised learning
-
O. Chapelle, B. Scholkopf and A. Zien, eds, The MIT Press, Cambridge, MA
-
V. Vapnik, Transductive inference and semi-supervised learning, in: Semi-Supervised Learning, O. Chapelle, B. Scholkopf and A. Zien, eds, The MIT Press, Cambridge, MA, 2006, pp. 453-472.
-
(2006)
Semi-Supervised Learning
, pp. 453-472
-
-
Vapnik, V.1
-
35
-
-
3242775432
-
Multi-relational learning, text mining, and semi-supervised learning for functional genomics
-
M.A. Krogel and T. Scheffer, Multi-relational learning, text mining, and semi-supervised learning for functional genomics, Mach. Learn. 57(1/2) (2004), 61-81.
-
(2004)
Mach. Learn
, vol.57
, Issue.1-2
, pp. 61-81
-
-
Krogel, M.A.1
Scheffer, T.2
-
36
-
-
26444589396
-
Transductive support vector machines and applications in bioinformatics for promoter recognition
-
N. Kasabov and S. Pang, Transductive support vector machines and applications in bioinformatics for promoter recognition, Neur: Inf. Proc.-Lett. Rev. 3(2) (2004), 31-38.
-
(2004)
Neur: Inf. Proc.-Lett. Rev
, vol.3
, Issue.2
, pp. 31-38
-
-
Kasabov, N.1
Pang, S.2
-
37
-
-
33745456231
-
Semi-supervised learning literature survey
-
Technical Report 1530, Computer Sciences, University of Wisconsin-Madison
-
X. Zhu, Semi-supervised learning literature survey, Technical Report 1530, Computer Sciences, University of Wisconsin-Madison, 2006.
-
(2006)
-
-
Zhu, X.1
-
40
-
-
0037435030
-
Mass spectrometry-based proteomics
-
R. Aebersold and M. Mann, Mass spectrometry-based proteomics, Nature 422(6928) (2003), 198-207.
-
(2003)
Nature
, vol.422
, Issue.6928
, pp. 198-207
-
-
Aebersold, R.1
Mann, M.2
-
41
-
-
85016229161
-
-
D. Lin, D.L. Tabb and J.R. Yates, 3rd, Large-scale protein identification using mass spectrometry, Biochim. Biophys. Acta 1646(1/2) (2003), 1-10.
-
D. Lin, D.L. Tabb and J.R. Yates, 3rd, Large-scale protein identification using mass spectrometry, Biochim. Biophys. Acta 1646(1/2) (2003), 1-10.
-
-
-
-
42
-
-
20644466114
-
Comparative n-gram analysis of whole-genome protein sequences
-
San Diego, CA, March
-
M. Ganapathiraju, D. Weisser, R. Rosenfeld, J. Carboneil, R. Reddy and J. Klein-Seetharaman, Comparative n-gram analysis of whole-genome protein sequences, in: Proceedings of the HLT'02: Human Language Technologies Conference, San Diego, CA, March, 2002.
-
(2002)
Proceedings of the HLT'02: Human Language Technologies Conference
-
-
Ganapathiraju, M.1
Weisser, D.2
Rosenfeld, R.3
Carboneil, J.4
Reddy, R.5
Klein-Seetharaman, J.6
-
43
-
-
7244254459
-
How independent are the appearances of n-mers in different genomes?
-
Y. Fofanov, How independent are the appearances of n-mers in different genomes?, Bioinformatics 20(15) (2004), 2421-2428.
-
(2004)
Bioinformatics
, vol.20
, Issue.15
, pp. 2421-2428
-
-
Fofanov, Y.1
-
44
-
-
79955757411
-
Combining naive Bayes and n-gram language models for text classification
-
Pisa, Italy
-
F. Peng and D. Schuurmans, Combining naive Bayes and n-gram language models for text classification, in: Proceedings of the Advances in Information Retrieval: 25th European Conference on IR Research, ECIR 2003, Pisa, Italy, 2003.
-
(2003)
Proceedings of the Advances in Information Retrieval: 25th European Conference on IR Research, ECIR 2003
-
-
Peng, F.1
Schuurmans, D.2
-
45
-
-
0002629270
-
Maximum likelihood from incomplete data via the EM algorithm
-
A.P. Dempster, N.M. Laird and D.B. Rubin, Maximum likelihood from incomplete data via the EM algorithm, J. Roy. Statist. Soc. Ser: B 39(1) (1977), 1-38.
-
(1977)
J. Roy. Statist. Soc. Ser: B
, vol.39
, Issue.1
, pp. 1-38
-
-
Dempster, A.P.1
Laird, N.M.2
Rubin, D.B.3
-
47
-
-
0842309161
-
Discovering molecular pathways from protein interaction and gene expression data
-
E. Segal, Discovering molecular pathways from protein interaction and gene expression data, Bioinformatics 19(90001) (2003), 264-272.
-
(2003)
Bioinformatics
, vol.19
, pp. 264-272
-
-
Segal, E.1
-
48
-
-
0036799752
-
Inferring domain-domain interactions from protein-protein interactions
-
M. Deng, S. Mehta, F. Sun and T. Chen, Inferring domain-domain interactions from protein-protein interactions, Gen. Res. 12 (2002), 1540-1548.
-
(2002)
Gen. Res
, vol.12
, pp. 1540-1548
-
-
Deng, M.1
Mehta, S.2
Sun, F.3
Chen, T.4
-
49
-
-
0035109647
-
Variations on probabilistic suffix trees: Statistical modeling and prediction of protein families
-
G. Bejerano and G. Yona, Variations on probabilistic suffix trees: statistical modeling and prediction of protein families, Bioinformatics 17(1) (2001), 23-43.
-
(2001)
Bioinformatics
, vol.17
, Issue.1
, pp. 23-43
-
-
Bejerano, G.1
Yona, G.2
-
50
-
-
34249753618
-
Support-vector networks
-
C. Cortes and V. Vapnik, Support-vector networks, Mach. Learn. 20(3) (1995), 273-297.
-
(1995)
Mach. Learn
, vol.20
, Issue.3
, pp. 273-297
-
-
Cortes, C.1
Vapnik, V.2
-
51
-
-
33747128180
-
Large scale transductive SVMs
-
R. Collobert, F. Sinz, J. Weston and L. Bottou, Large scale transductive SVMs, J. Mach. Learn. Res. 7 (2006), 1687-1712.
-
(2006)
J. Mach. Learn. Res
, vol.7
, pp. 1687-1712
-
-
Collobert, R.1
Sinz, F.2
Weston, J.3
Bottou, L.4
-
52
-
-
0037255072
-
-
The SWISS-PROT protein knowledgebase and its supplement TrEMBL in
-
B. Boeckmann, A. Bairoch, R. Apweiler, M.C. Blatter, A. Estreicher, E. Gasteiger, M.J. Martin, K. Michoud, C. O'Donovan, I. Phan, S. Pilbout and M. Schneider, The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003, Nucleic Acids Res. 31(1) (2003), 365-370.
-
(2003)
Nucleic Acids Res
, vol.31
, Issue.1
, pp. 365-370
-
-
Boeckmann, B.1
Bairoch, A.2
Apweiler, R.3
Blatter, M.C.4
Estreicher, A.5
Gasteiger, E.6
Martin, M.J.7
Michoud, K.8
O'Donovan, C.9
Phan, I.10
Pilbout, S.11
Schneider, M.12
-
53
-
-
33745634395
-
Cd-hit: A fast program, for clustering and comparing large sets of protein or nucleotide sequences
-
W. Li and A. Godzik, Cd-hit: a fast program, for clustering and comparing large sets of protein or nucleotide sequences, Bioinformatics 22(13) (2006), 1658-1659.
-
(2006)
Bioinformatics
, vol.22
, Issue.13
, pp. 1658-1659
-
-
Li, W.1
Godzik, A.2
-
54
-
-
27144441097
-
An evaluation of statistical approaches to text categorization
-
Y. Yang, An evaluation of statistical approaches to text categorization, Inf. Retr. 1(1) (1999), 69-90.
-
(1999)
Inf. Retr
, vol.1
, Issue.1
, pp. 69-90
-
-
Yang, Y.1
-
55
-
-
85024373635
-
A re-examination of text categorization methods
-
Berkeley, CA
-
Y. Yang and X. Liu, A re-examination of text categorization methods, in: Proceedings of the 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, Berkeley, CA, 1999, pp. 42-49.
-
(1999)
Proceedings of the 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval
, pp. 42-49
-
-
Yang, Y.1
Liu, X.2
-
56
-
-
42249094907
-
Support vector machine solvers
-
L. Bottou, O. Chapelle, D. DeCoste and J. Weston, eds, The MIT Press, Cambridge, MA
-
L. Bottou and C.J. Lin, Support vector machine solvers, in: Large-Scale Kernel Machines, L. Bottou, O. Chapelle, D. DeCoste and J. Weston, eds, The MIT Press, Cambridge, MA, 2007, pp. 1-27.
-
(2007)
Large-Scale Kernel Machines
, pp. 1-27
-
-
Bottou, L.1
Lin, C.J.2
-
57
-
-
0141515750
-
Prediction of protein subcellular locations by support vector machines using compositions of amino acids and amino acid pairs
-
K.J. Park and M. Kanehisa, Prediction of protein subcellular locations by support vector machines using compositions of amino acids and amino acid pairs, Bioinformatics 19(13) (2003), 1656-1663.
-
(2003)
Bioinformatics
, vol.19
, Issue.13
, pp. 1656-1663
-
-
Park, K.J.1
Kanehisa, M.2
-
58
-
-
17644389617
-
SVM-based method for subcellular localization of human proteins using amino acid compositions, their order and similarity search
-
A. Garg, M. Bhasin and G.P. Raghava, SVM-based method for subcellular localization of human proteins using amino acid compositions, their order and similarity search, J. Biol. Chem. 280(15) (2005), 14427-14432.
-
(2005)
J. Biol. Chem
, vol.280
, Issue.15
, pp. 14427-14432
-
-
Garg, A.1
Bhasin, M.2
Raghava, G.P.3
-
59
-
-
0036161011
-
Choosing multiple parameters for support vector machines
-
O. Chapelle, V. Vapnik, O. Bousquet and S. Mukherjee, Choosing multiple parameters for support vector machines, Mach. Learn. 46(1/3) (2002), 131-159.
-
(2002)
Mach. Learn
, vol.46
, Issue.1-3
, pp. 131-159
-
-
Chapelle, O.1
Vapnik, V.2
Bousquet, O.3
Mukherjee, S.4
-
60
-
-
33746218840
-
Prediction of protein subcellular localization
-
C.S. Yu, Y.C. Chen, C.H. Lu and J.K. Hwang, Prediction of protein subcellular localization, Proteins 64(3) (2006), 643-651.
-
(2006)
Proteins
, vol.64
, Issue.3
, pp. 643-651
-
-
Yu, C.S.1
Chen, Y.C.2
Lu, C.H.3
Hwang, J.K.4
|