메뉴 건너뛰기




Volumn 16, Issue 1, 2008, Pages 5-29

Semi-supervised learning for classification of protein sequence data

Author keywords

Bioinformatics; EM; Expectation maximization; Protein sequence classification; Semi supervised learning

Indexed keywords

IMAGE CLASSIFICATION; OPTIMIZATION; PROTEINS; SUPERVISED LEARNING; SUPPORT VECTOR MACHINES; TEXT PROCESSING;

EID: 42249108432     PISSN: 10589244     EISSN: None     Source Type: Journal    
DOI: 10.1155/2008/795010     Document Type: Article
Times cited : (7)

References (60)
  • 1
    • 20644436473 scopus 로고    scopus 로고
    • Key challenges in proteomics and proteoinformatics. Progress in proteins
    • M. Hamady, T.H. Cheung, K. Resing, K.J. Cios and R. Knight, Key challenges in proteomics and proteoinformatics. Progress in proteins, IEEE Eng. Med Biol. Mag. 24(3) (2005), 34-40.
    • (2005) IEEE Eng. Med Biol. Mag , vol.24 , Issue.3 , pp. 34-40
    • Hamady, M.1    Cheung, T.H.2    Resing, K.3    Cios, K.J.4    Knight, R.5
  • 4
    • 34548832558 scopus 로고    scopus 로고
    • ngLOC: An n-gram-based Bayesian mediod for estimating the subcellular proteomes of eukaryotes
    • B.R. King and C. Guda, ngLOC: an n-gram-based Bayesian mediod for estimating the subcellular proteomes of eukaryotes, Gen. Biol. 8(5) (2007), R68.
    • (2007) Gen. Biol , vol.8 , Issue.5
    • King, B.R.1    Guda, C.2
  • 5
    • 0033886806 scopus 로고    scopus 로고
    • Text classification from labeled and unlabeled documents using EM
    • K. Nigam, A.K. McCallum, S. Thrun and T. Mitchell, Text classification from labeled and unlabeled documents using EM, Mach. Learn. 39(2/3) (2000), 103-134.
    • (2000) Mach. Learn , vol.39 , Issue.2-3 , pp. 103-134
    • Nigam, K.1    McCallum, A.K.2    Thrun, S.3    Mitchell, T.4
  • 6
    • 33750027607 scopus 로고    scopus 로고
    • Semi-supervised text classification using EM
    • O. Chapelle, B. Scholkopf and A. Zien, eds, The MIT Press, Cambridge, MA
    • K. Nigam, A.K. McCallum and T. Mitchell, Semi-supervised text classification using EM, in: Semi-Supervised Learning, O. Chapelle, B. Scholkopf and A. Zien, eds, The MIT Press, Cambridge, MA, 2006, pp. 33-54.
    • (2006) Semi-Supervised Learning , pp. 33-54
    • Nigam, K.1    McCallum, A.K.2    Mitchell, T.3
  • 10
    • 0027968068 scopus 로고
    • CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice
    • J.D. Thompson, D.O. Higgins and T.J. Gibson, CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice, Nucleic Acids Res. 22(22) (1994), 4673-4680.
    • (1994) Nucleic Acids Res , vol.22 , Issue.22 , pp. 4673-4680
    • Thompson, J.D.1    Higgins, D.O.2    Gibson, T.J.3
  • 11
    • 0032509105 scopus 로고    scopus 로고
    • Sequence comparisons using multiple sequences detect three times as many remote homologues as pairwise methods
    • J. Park, K. Karplus, C. Barrett, R. Hughey, D. Haussler, T. Hubbard and C. Chothia, Sequence comparisons using multiple sequences detect three times as many remote homologues as pairwise methods, J. Mol. Biol. 284(4) (1998), 1201-1210.
    • (1998) J. Mol. Biol , vol.284 , Issue.4 , pp. 1201-1210
    • Park, J.1    Karplus, K.2    Barrett, C.3    Hughey, R.4    Haussler, D.5    Hubbard, T.6    Chothia, C.7
  • 12
    • 0028181441 scopus 로고
    • Hidden Markov models in computational biology. Applications to protein modeling
    • A. Krogh, M. Brown, I.S. Mian, K. Sjolander and D. Haussler, Hidden Markov models in computational biology. Applications to protein modeling, J. Mol. Biol. 235(5) (1994), 1501-1531.
    • (1994) J. Mol. Biol , vol.235 , Issue.5 , pp. 1501-1531
    • Krogh, A.1    Brown, M.2    Mian, I.S.3    Sjolander, K.4    Haussler, D.5
  • 14
    • 59549087165 scopus 로고    scopus 로고
    • On discriminative vs. generative classifiers: A comparison of logistic regression, and naive Bayes
    • The MIT Press, Cambridge, MA
    • A.Y. Ng and M.J. Jordan, On discriminative vs. generative classifiers: A comparison of logistic regression, and naive Bayes, in: Advances in Neural Information Processing Systems, Vol. 14, The MIT Press, Cambridge, MA, 2002.
    • (2002) Advances in Neural Information Processing Systems , vol.14
    • Ng, A.Y.1    Jordan, M.J.2
  • 15
    • 0034048878 scopus 로고    scopus 로고
    • A discriminative framework for detecting remote protein homologies
    • T. Jaakkola, M. Diekhans and D. Haussler, A discriminative framework for detecting remote protein homologies, J. Comput. Biol. 7(1/2) (2000), 95-114.
    • (2000) J. Comput. Biol , vol.7 , Issue.1-2 , pp. 95-114
    • Jaakkola, T.1    Diekhans, M.2    Haussler, D.3
  • 16
    • 0034843744 scopus 로고    scopus 로고
    • Support vector machine approach for protein subcellular localization prediction
    • S. Hua and Z. Sun, Support vector machine approach for protein subcellular localization prediction, Bioinformatics 17(8) (2001), 721-728.
    • (2001) Bioinformatics , vol.17 , Issue.8 , pp. 721-728
    • Hua, S.1    Sun, Z.2
  • 18
    • 0027291015 scopus 로고
    • Prediction of protein secondary structure at better than 70% accuracy
    • B. Rost and C. Sander, Prediction of protein secondary structure at better than 70% accuracy, J. Mol. Biol. 232(2) (1993), 584-599.
    • (1993) J. Mol. Biol , vol.232 , Issue.2 , pp. 584-599
    • Rost, B.1    Sander, C.2
  • 19
    • 0033492988 scopus 로고    scopus 로고
    • Decision tree-based formation of consensus protein secondary structure prediction
    • J. Selbig, T. Mevissen and T. Lengauer, Decision tree-based formation of consensus protein secondary structure prediction, Bioinformatics 15(12) (1999), 1039-1046.
    • (1999) Bioinformatics , vol.15 , Issue.12 , pp. 1039-1046
    • Selbig, J.1    Mevissen, T.2    Lengauer, T.3
  • 20
    • 0035910270 scopus 로고    scopus 로고
    • Predicting transmembrane protein topology with a hidden Markov model: Application to complete genomes
    • A. Krogh, B. Larsson, G. von Heijne and E.L. Sonnhammer, Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes, J. Mol. Biol. 305(3) (2001), 567-580.
    • (2001) J. Mol. Biol , vol.305 , Issue.3 , pp. 567-580
    • Krogh, A.1    Larsson, B.2    von Heijne, G.3    Sonnhammer, E.L.4
  • 21
    • 13944255457 scopus 로고    scopus 로고
    • Protein classification based on text document classification techniques
    • B.Y. Cheng, J.G. Carbonell and J. Klein-Seetharaman, Protein classification based on text document classification techniques, Proteins 58(4) (2005), 955-970.
    • (2005) Proteins , vol.58 , Issue.4 , pp. 955-970
    • Cheng, B.Y.1    Carbonell, J.G.2    Klein-Seetharaman, J.3
  • 22
    • 2442687039 scopus 로고    scopus 로고
    • Combining text mining and sequence analysis to discover protein functional regions
    • Hawaii, January 6-10
    • E. Eskin and E. Agichtein, Combining text mining and sequence analysis to discover protein functional regions, in: Proceedings of the 9th Pacific Symposium on Biocomputing, Hawaii, January 6-10, 2004, pp. 288-299.
    • (2004) Proceedings of the 9th Pacific Symposium on Biocomputing , pp. 288-299
    • Eskin, E.1    Agichtein, E.2
  • 24
    • 0346799108 scopus 로고    scopus 로고
    • Prediction of protein function from protein sequence and structure
    • J.C. Whisstock and A.M. Lesk, Prediction of protein function from protein sequence and structure, Quart. Rev. Biophys. 36(3) (2003), 307-340.
    • (2003) Quart. Rev. Biophys , vol.36 , Issue.3 , pp. 307-340
    • Whisstock, J.C.1    Lesk, A.M.2
  • 25
    • 84899033220 scopus 로고    scopus 로고
    • Kernel expansions with unlabeled examples
    • M. Szummer and T. Jaakkola, Kernel expansions with unlabeled examples, Adv. Neur. Inf. Proc. Syst. 13 (2001), 626-632.
    • (2001) Adv. Neur. Inf. Proc. Syst , vol.13 , pp. 626-632
    • Szummer, M.1    Jaakkola, T.2
  • 27
    • 50649084677 scopus 로고    scopus 로고
    • Cluster kernels for semi-supervised learning
    • S. Becker, S. Thrun and K. Obermayer, eds, The MIT Press, Cambridge, MA
    • O. Chapelle, J. Weston and B. Scholkopf, Cluster kernels for semi-supervised learning, in: Advances in Neural Information Processing Systems, Vol. 15, S. Becker, S. Thrun and K. Obermayer, eds, The MIT Press, Cambridge, MA, 2003, pp. 585-592.
    • (2003) Advances in Neural Information Processing Systems , vol.15 , pp. 585-592
    • Chapelle, O.1    Weston, J.2    Scholkopf, B.3
  • 28
    • 25144481906 scopus 로고    scopus 로고
    • Semi-supervised protein classification using cluster kernels
    • J. Weston, C. Leslie, E. Ie, D. Zhou, A. Elisseeff and W.S. Noble, Semi-supervised protein classification using cluster kernels, Bioinformatics 21(15) (2005), 3241-3247.
    • (2005) Bioinformatics , vol.21 , Issue.15 , pp. 3241-3247
    • Weston, J.1    Leslie, C.2    Ie, E.3    Zhou, D.4    Elisseeff, A.5    Noble, W.S.6
  • 31
    • 34248344212 scopus 로고    scopus 로고
    • Interactive semisupervised learning for microarray analysis, IEEE/ACM Trans
    • Y. Lu, Q. Tian, F. Liu, M. Sanchez and Y. Wang, Interactive semisupervised learning for microarray analysis, IEEE/ACM Trans. Comput. Biol. Bioinf. 4(2) (2007), 190-203.
    • (2007) Comput. Biol. Bioinf , vol.4 , Issue.2 , pp. 190-203
    • Lu, Y.1    Tian, Q.2    Liu, F.3    Sanchez, M.4    Wang, Y.5
  • 32
    • 42249087646 scopus 로고    scopus 로고
    • Transductive inference and semi-supervised learning
    • O. Chapelle, B. Scholkopf and A. Zien, eds, The MIT Press, Cambridge, MA
    • V. Vapnik, Transductive inference and semi-supervised learning, in: Semi-Supervised Learning, O. Chapelle, B. Scholkopf and A. Zien, eds, The MIT Press, Cambridge, MA, 2006, pp. 453-472.
    • (2006) Semi-Supervised Learning , pp. 453-472
    • Vapnik, V.1
  • 35
    • 3242775432 scopus 로고    scopus 로고
    • Multi-relational learning, text mining, and semi-supervised learning for functional genomics
    • M.A. Krogel and T. Scheffer, Multi-relational learning, text mining, and semi-supervised learning for functional genomics, Mach. Learn. 57(1/2) (2004), 61-81.
    • (2004) Mach. Learn , vol.57 , Issue.1-2 , pp. 61-81
    • Krogel, M.A.1    Scheffer, T.2
  • 36
    • 26444589396 scopus 로고    scopus 로고
    • Transductive support vector machines and applications in bioinformatics for promoter recognition
    • N. Kasabov and S. Pang, Transductive support vector machines and applications in bioinformatics for promoter recognition, Neur: Inf. Proc.-Lett. Rev. 3(2) (2004), 31-38.
    • (2004) Neur: Inf. Proc.-Lett. Rev , vol.3 , Issue.2 , pp. 31-38
    • Kasabov, N.1    Pang, S.2
  • 37
    • 33745456231 scopus 로고    scopus 로고
    • Semi-supervised learning literature survey
    • Technical Report 1530, Computer Sciences, University of Wisconsin-Madison
    • X. Zhu, Semi-supervised learning literature survey, Technical Report 1530, Computer Sciences, University of Wisconsin-Madison, 2006.
    • (2006)
    • Zhu, X.1
  • 40
    • 0037435030 scopus 로고    scopus 로고
    • Mass spectrometry-based proteomics
    • R. Aebersold and M. Mann, Mass spectrometry-based proteomics, Nature 422(6928) (2003), 198-207.
    • (2003) Nature , vol.422 , Issue.6928 , pp. 198-207
    • Aebersold, R.1    Mann, M.2
  • 41
    • 85016229161 scopus 로고    scopus 로고
    • D. Lin, D.L. Tabb and J.R. Yates, 3rd, Large-scale protein identification using mass spectrometry, Biochim. Biophys. Acta 1646(1/2) (2003), 1-10.
    • D. Lin, D.L. Tabb and J.R. Yates, 3rd, Large-scale protein identification using mass spectrometry, Biochim. Biophys. Acta 1646(1/2) (2003), 1-10.
  • 43
    • 7244254459 scopus 로고    scopus 로고
    • How independent are the appearances of n-mers in different genomes?
    • Y. Fofanov, How independent are the appearances of n-mers in different genomes?, Bioinformatics 20(15) (2004), 2421-2428.
    • (2004) Bioinformatics , vol.20 , Issue.15 , pp. 2421-2428
    • Fofanov, Y.1
  • 45
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via the EM algorithm
    • A.P. Dempster, N.M. Laird and D.B. Rubin, Maximum likelihood from incomplete data via the EM algorithm, J. Roy. Statist. Soc. Ser: B 39(1) (1977), 1-38.
    • (1977) J. Roy. Statist. Soc. Ser: B , vol.39 , Issue.1 , pp. 1-38
    • Dempster, A.P.1    Laird, N.M.2    Rubin, D.B.3
  • 47
    • 0842309161 scopus 로고    scopus 로고
    • Discovering molecular pathways from protein interaction and gene expression data
    • E. Segal, Discovering molecular pathways from protein interaction and gene expression data, Bioinformatics 19(90001) (2003), 264-272.
    • (2003) Bioinformatics , vol.19 , pp. 264-272
    • Segal, E.1
  • 48
    • 0036799752 scopus 로고    scopus 로고
    • Inferring domain-domain interactions from protein-protein interactions
    • M. Deng, S. Mehta, F. Sun and T. Chen, Inferring domain-domain interactions from protein-protein interactions, Gen. Res. 12 (2002), 1540-1548.
    • (2002) Gen. Res , vol.12 , pp. 1540-1548
    • Deng, M.1    Mehta, S.2    Sun, F.3    Chen, T.4
  • 49
    • 0035109647 scopus 로고    scopus 로고
    • Variations on probabilistic suffix trees: Statistical modeling and prediction of protein families
    • G. Bejerano and G. Yona, Variations on probabilistic suffix trees: statistical modeling and prediction of protein families, Bioinformatics 17(1) (2001), 23-43.
    • (2001) Bioinformatics , vol.17 , Issue.1 , pp. 23-43
    • Bejerano, G.1    Yona, G.2
  • 50
    • 34249753618 scopus 로고
    • Support-vector networks
    • C. Cortes and V. Vapnik, Support-vector networks, Mach. Learn. 20(3) (1995), 273-297.
    • (1995) Mach. Learn , vol.20 , Issue.3 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 53
    • 33745634395 scopus 로고    scopus 로고
    • Cd-hit: A fast program, for clustering and comparing large sets of protein or nucleotide sequences
    • W. Li and A. Godzik, Cd-hit: a fast program, for clustering and comparing large sets of protein or nucleotide sequences, Bioinformatics 22(13) (2006), 1658-1659.
    • (2006) Bioinformatics , vol.22 , Issue.13 , pp. 1658-1659
    • Li, W.1    Godzik, A.2
  • 54
    • 27144441097 scopus 로고    scopus 로고
    • An evaluation of statistical approaches to text categorization
    • Y. Yang, An evaluation of statistical approaches to text categorization, Inf. Retr. 1(1) (1999), 69-90.
    • (1999) Inf. Retr , vol.1 , Issue.1 , pp. 69-90
    • Yang, Y.1
  • 56
    • 42249094907 scopus 로고    scopus 로고
    • Support vector machine solvers
    • L. Bottou, O. Chapelle, D. DeCoste and J. Weston, eds, The MIT Press, Cambridge, MA
    • L. Bottou and C.J. Lin, Support vector machine solvers, in: Large-Scale Kernel Machines, L. Bottou, O. Chapelle, D. DeCoste and J. Weston, eds, The MIT Press, Cambridge, MA, 2007, pp. 1-27.
    • (2007) Large-Scale Kernel Machines , pp. 1-27
    • Bottou, L.1    Lin, C.J.2
  • 57
    • 0141515750 scopus 로고    scopus 로고
    • Prediction of protein subcellular locations by support vector machines using compositions of amino acids and amino acid pairs
    • K.J. Park and M. Kanehisa, Prediction of protein subcellular locations by support vector machines using compositions of amino acids and amino acid pairs, Bioinformatics 19(13) (2003), 1656-1663.
    • (2003) Bioinformatics , vol.19 , Issue.13 , pp. 1656-1663
    • Park, K.J.1    Kanehisa, M.2
  • 58
    • 17644389617 scopus 로고    scopus 로고
    • SVM-based method for subcellular localization of human proteins using amino acid compositions, their order and similarity search
    • A. Garg, M. Bhasin and G.P. Raghava, SVM-based method for subcellular localization of human proteins using amino acid compositions, their order and similarity search, J. Biol. Chem. 280(15) (2005), 14427-14432.
    • (2005) J. Biol. Chem , vol.280 , Issue.15 , pp. 14427-14432
    • Garg, A.1    Bhasin, M.2    Raghava, G.P.3
  • 59
    • 0036161011 scopus 로고    scopus 로고
    • Choosing multiple parameters for support vector machines
    • O. Chapelle, V. Vapnik, O. Bousquet and S. Mukherjee, Choosing multiple parameters for support vector machines, Mach. Learn. 46(1/3) (2002), 131-159.
    • (2002) Mach. Learn , vol.46 , Issue.1-3 , pp. 131-159
    • Chapelle, O.1    Vapnik, V.2    Bousquet, O.3    Mukherjee, S.4
  • 60
    • 33746218840 scopus 로고    scopus 로고
    • Prediction of protein subcellular localization
    • C.S. Yu, Y.C. Chen, C.H. Lu and J.K. Hwang, Prediction of protein subcellular localization, Proteins 64(3) (2006), 643-651.
    • (2006) Proteins , vol.64 , Issue.3 , pp. 643-651
    • Yu, C.S.1    Chen, Y.C.2    Lu, C.H.3    Hwang, J.K.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.