메뉴 건너뛰기




Volumn 5782 LNAI, Issue PART 2, 2009, Pages 617-631

Semi-supervised multi-task regression

Author keywords

[No Author keywords available]

Indexed keywords

DATA SETS; GAUSSIAN PROCESS; KERNEL FUNCTION; KERNEL PARAMETER; LABELED DATA; LEARNING PERFORMANCE; MACHINE LEARNING APPLICATIONS; MULTITASK LEARNING; REGRESSION APPLICATIONS; REGRESSION METHOD; SEMI-SUPERVISED; SEMI-SUPERVISED LEARNING; UNLABELED DATA;

EID: 70349952451     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-642-04174-7_40     Document Type: Conference Paper
Times cited : (38)

References (35)
  • 1
    • 33749252873 scopus 로고    scopus 로고
    • Chapelle O., Zien, A., Schölkopf, B. (eds.): MIT Press, Boston
    • Chapelle, O., Zien, A., Schölkopf, B. (eds.): Semi-Supervised Learning. MIT Press, Boston (2006)
    • (2006) Semi-Supervised Learning
  • 3
    • 84898958346 scopus 로고    scopus 로고
    • Semi-supervised support vector machines
    • Vancouver, British Columbia, Canada
    • Bennett, K., Demiriz, A.: Semi-supervised support vector machines. In: Advances in Neural Information Processing Systems 11, Vancouver, British Columbia, Canada, pp. 368-374 (1998)
    • (1998) Advances in Neural Information Processing Systems , vol.11 , pp. 368-374
    • Bennett, K.1    Demiriz, A.2
  • 4
    • 0001938951 scopus 로고    scopus 로고
    • Transductive inference for text classification using support vector machines
    • San Francisco, CA, USA
    • Joachims, T.: Transductive inference for text classification using support vector machines. In: Proceedings of the Sixteenth International Conference on Machine Learning, San Francisco, CA, USA, pp. 200-209 (1999)
    • (1999) Proceedings of the Sixteenth International Conference on Machine Learning , pp. 200-209
    • Joachims, T.1
  • 7
    • 33750729556 scopus 로고    scopus 로고
    • Manifold regularization: A geometric framework for learning from labeled and unlabeled examples
    • Belkin, M., Niyogi, P., Sindhwani, V.: Manifold regularization: A geometric framework for learning from labeled and unlabeled examples. Journal of Machine Learning Research 7, 2399-2434 (2006)
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 2399-2434
    • Belkin, M.1    Niyogi, P.2    Sindhwani, V.3
  • 8
    • 0031189914 scopus 로고    scopus 로고
    • Multitask learning
    • Caruana, R.: Multitask learning. Machine Learning 28(1), 41-75 (1997)
    • (1997) Machine Learning , vol.28 , Issue.1 , pp. 41-75
    • Caruana, R.1
  • 9
    • 0031187873 scopus 로고    scopus 로고
    • A Bayesian/information theoretic model of learning to learn via multiple task sampling
    • Baxter, J.: A Bayesian/information theoretic model of learning to learn via multiple task sampling. Machine Learning 28(1), 7-39 (1997)
    • (1997) Machine Learning , vol.28 , Issue.1 , pp. 7-39
    • Baxter, J.1
  • 10
    • 85031124575 scopus 로고    scopus 로고
    • Is learning the n-th thing any easier than learning the first?
    • In: Touretzky, D.S., Mozer, M., Hasselmo, M.E. (eds.), Denver, CO
    • Thrun, S.: Is learning the n-th thing any easier than learning the first? In: Touretzky, D.S., Mozer, M., Hasselmo, M.E. (eds.) Advances in Neural Information Processing Systems 8, Denver, CO, pp. 640-646 (1996)
    • (1996) Advances in Neural Information Processing Systems , vol.8 , pp. 640-646
    • Thrun, S.1
  • 11
    • 55149088329 scopus 로고    scopus 로고
    • Convex multi-task feature learning
    • Argyriou, A., Evgeniou, T., Pontil, M.: Convex multi-task feature learning. Machine Learning 73(3), 243-272 (2008)
    • (2008) Machine Learning , vol.73 , Issue.3 , pp. 243-272
    • Argyriou, A.1    Evgeniou, T.2    Pontil, M.3
  • 13
    • 0346238931 scopus 로고    scopus 로고
    • Task clustering and gating for Bayesian multitask learning
    • Bakker, B., Heskes, T.: Task clustering and gating for Bayesian multitask learning. Journal of Machine Learning Research 4, 83-99 (2003)
    • (2003) Journal of Machine Learning Research , vol.4 , pp. 83-99
    • Bakker, B.1    Heskes, T.2
  • 16
    • 84899006514 scopus 로고    scopus 로고
    • Learning Gaussian process kernels via hierarchical Bayes
    • In: Saul, L.K.,Weiss, Y., Bottou, L. (eds.), Vancouver, British Columbia, Canada
    • Schwaighofer, A., Tresp, V., Yu, K.: Learning Gaussian process kernels via hierarchical Bayes. In: Saul, L.K.,Weiss, Y., Bottou, L. (eds.) Advances in Neural Information Processing Systems 17, Vancouver, British Columbia, Canada, pp. 1209-1216 (2005)
    • (2005) Advances in Neural Information Processing Systems , vol.17 , pp. 1209-1216
    • Schwaighofer, A.1    Tresp, V.2    Yu, K.3
  • 18
    • 85161977902 scopus 로고    scopus 로고
    • Multi-task Gaussian process prediction
    • In: Platt, J., Koller, D., Singer, Y., Roweis, S. (eds.), Vancouver, British Columbia, Canada
    • Bonilla, E., Chai, K.M.A.,Williams, C.: Multi-task Gaussian process prediction. In: Platt, J., Koller, D., Singer, Y., Roweis, S. (eds.) Advances in Neural Information Processing Systems 20, Vancouver, British Columbia, Canada, pp. 153-160 (2008)
    • (2008) Advances in Neural Information Processing Systems , vol.20 , pp. 153-160
    • Bonilla, E.1    Chai, K.M.A.2    Williams, C.3
  • 19
    • 27844439373 scopus 로고    scopus 로고
    • A framework for learning predictive structures from multiple tasks and unlabeled data
    • Ando, R.K., Zhang, T.: A framework for learning predictive structures from multiple tasks and unlabeled data. Journal of Machine Learning Research 6, 1817-1853 (2005)
    • (2005) Journal of Machine Learning Research , vol.6 , pp. 1817-1853
    • Ando, R.K.1    Zhang, T.2
  • 20
    • 85162028220 scopus 로고    scopus 로고
    • Semi-supervised multitask learning
    • In: Platt, J., Koller, D., Singer, Y., Roweis, S. (eds.), Vancouver, British Columbia, Canada
    • Liu, Q., Liao, X., Carin, L.: Semi-supervised multitask learning. In: Platt, J., Koller, D., Singer, Y., Roweis, S. (eds.) Advances in Neural Information Processing Systems 20, Vancouver, British Columbia, Canada, pp. 937-944 (2008)
    • (2008) Advances in Neural Information Processing Systems , vol.20 , pp. 937-944
    • Liu, Q.1    Liao, X.2    Carin, L.3
  • 24
    • 2342632212 scopus 로고    scopus 로고
    • Solving a huge number of similar tasks: A combination of multi-task learning and a hierarchical Bayesian approach
    • Madison, Wisconson, USA
    • Heskes, T.: Solving a huge number of similar tasks: a combination of multi-task learning and a hierarchical Bayesian approach. In: Proceedings of the Fifteenth International Conference on Machine Learning, Madison, Wisconson, USA, pp. 233-241 (1998)
    • (1998) Proceedings of the Fifteenth International Conference on Machine Learning , pp. 233-241
    • Heskes, T.1
  • 27
    • 0003882879 scopus 로고    scopus 로고
    • American Mathematical Society, Rhode Island
    • Chung, F.R.K.: Spectral Graph Theory. American Mathematical Society, Rhode Island (1997)
    • (1997) Spectral Graph Theory
    • Chung, F.R.K.1
  • 34
    • 27144556425 scopus 로고    scopus 로고
    • Incremental online learning in high dimensions
    • Vijayakumar, S., D'Souza, A., Schaal, S.: Incremental online learning in high dimensions. Neural Computation 17(12), 2602-2634 (2005)
    • (2005) Neural Computation , vol.17 , Issue.12 , pp. 2602-2634
    • Vijayakumar, S.1    D'Souza, A.2    Schaal, S.3
  • 35
    • 80053225881 scopus 로고    scopus 로고
    • Fast sparse Gaussian process methods: The informative vector machine
    • In: Becker, S., Thrun, S., Obermayer, K. (eds.), Vancouver, British Columbia, Canada
    • Lawrence, N.D., Seeger, M., Herbrich, R.: Fast sparse Gaussian process methods: The informative vector machine. In: Becker, S., Thrun, S., Obermayer, K. (eds.) Advances in Neural Information Processing Systems 15, Vancouver, British Columbia, Canada, pp. 609-616 (2003)
    • (2003) Advances in Neural Information Processing Systems , vol.15 , pp. 609-616
    • Lawrence, N.D.1    Seeger, M.2    Herbrich, R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.