메뉴 건너뛰기




Volumn , Issue , 2007, Pages 123-132

Nonlinear adaptive distance metric learning for clustering

Author keywords

Clustering; Convex programming; Distance metric; Kernel

Indexed keywords

CLUSTERING; CONVEX PROGRAMMING; DISTANCE METRIC; KERNEL;

EID: 36849021609     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1281192.1281209     Document Type: Conference Paper
Times cited : (64)

References (38)
  • 1
    • 0001614864 scopus 로고    scopus 로고
    • The MOSEK interior point optimizer for linear programming: An implementation of the homogeneous algorithm
    • T. T. H. Frenk, K. Roos and S. Zhang, editors, Kluwer Academic Publishers
    • E. D. Andersen and K. D. Andersen. The MOSEK interior point optimizer for linear programming: an implementation of the homogeneous algorithm. In T. T. H. Frenk, K. Roos and S. Zhang, editors, High Performance Optimization, pages 197-232. Kluwer Academic Publishers, 2000.
    • (2000) High Performance Optimization , pp. 197-232
    • Andersen, E.D.1    Andersen, K.D.2
  • 7
    • 32444442667 scopus 로고    scopus 로고
    • A unified view of kernel k-means, spectral clustering and graph partitioning
    • Technical report, TR-04-25, UTCS
    • I. S. Dhillon, Y. Guan, and B. Kulis. A unified view of kernel k-means, spectral clustering and graph partitioning. Technical report, TR-04-25, UTCS, 2004.
    • (2004)
    • Dhillon, I.S.1    Guan, Y.2    Kulis, B.3
  • 8
    • 0001493668 scopus 로고
    • Asymptotics of graphical projection pursuit
    • P. Diaconis and D. Freedman. Asymptotics of graphical projection pursuit. Annuals of Statistics, 12:793-815, 1984.
    • (1984) Annuals of Statistics , vol.12 , pp. 793-815
    • Diaconis, P.1    Freedman, D.2
  • 14
  • 15
    • 0041753016 scopus 로고
    • On almost linearity of low dimensional projections from high dimensional data
    • P. Hall and K. Li. On almost linearity of low dimensional projections from high dimensional data. Annuals of Statistics, 21:867-889, 1993.
    • (1993) Annuals of Statistics , vol.21 , pp. 867-889
    • Hall, P.1    Li, K.2
  • 23
    • 2342517502 scopus 로고    scopus 로고
    • Think globally, fit locally: Unsupervised learning of low dimensional manifolds
    • L. K. Saul and S. T. Roweis. Think globally, fit locally: Unsupervised learning of low dimensional manifolds. Journal of Machine Learning Research, 4:119-155, 2003.
    • (2003) Journal of Machine Learning Research , vol.4 , pp. 119-155
    • Saul, L.K.1    Roweis, S.T.2
  • 29
    • 0034704229 scopus 로고    scopus 로고
    • A global geometric framework for nonlinear dimensionality reduction
    • J. Tenenbaum, V. de Silva, and J. Langford. A global geometric framework for nonlinear dimensionality reduction. Science, 290(5500):2319-2323, 2000.
    • (2000) Science , vol.290 , Issue.5500 , pp. 2319-2323
    • Tenenbaum, J.1    de Silva, V.2    Langford, J.3
  • 34
    • 35148876898 scopus 로고    scopus 로고
    • Distance metric learning: A comprehensive survey
    • Technical report, Department of Computer Science and Engineering, Michigan State University
    • L. Yang and R. Jin. Distance metric learning: A comprehensive survey. Technical report, Department of Computer Science and Engineering, Michigan State University, 2006.
    • (2006)
    • Yang, L.1    Jin, R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.