-
1
-
-
0001614864
-
The MOSEK interior point optimizer for linear programming: An implementation of the homogeneous algorithm
-
T. T. H. Frenk, K. Roos and S. Zhang, editors, Kluwer Academic Publishers
-
E. D. Andersen and K. D. Andersen. The MOSEK interior point optimizer for linear programming: an implementation of the homogeneous algorithm. In T. T. H. Frenk, K. Roos and S. Zhang, editors, High Performance Optimization, pages 197-232. Kluwer Academic Publishers, 2000.
-
(2000)
High Performance Optimization
, pp. 197-232
-
-
Andersen, E.D.1
Andersen, K.D.2
-
2
-
-
33749254646
-
A DC-programming algorithm for kernel selection
-
A. Argyriou, R. Hauser, C. Micchelli, and M. Pontil. A DC-programming algorithm for kernel selection. In Proceedings of the Twenty-third International Conference on Machine Learning, pages 41-48, 2006.
-
(2006)
Proceedings of the Twenty-third International Conference on Machine Learning
, pp. 41-48
-
-
Argyriou, A.1
Hauser, R.2
Micchelli, C.3
Pontil, M.4
-
3
-
-
14344252374
-
Multiple kernel learning, conic duality, and the SMO algorithm
-
F. R. Bach, G. R. G. Lanckriet, and M. I. Jordan. Multiple kernel learning, conic duality, and the SMO algorithm. In Proceedings of the Twenty-first International Conference on Machine Learning, 2004.
-
(2004)
Proceedings of the Twenty-first International Conference on Machine Learning
-
-
Bach, F.R.1
Lanckriet, G.R.G.2
Jordan, M.I.3
-
7
-
-
32444442667
-
A unified view of kernel k-means, spectral clustering and graph partitioning
-
Technical report, TR-04-25, UTCS
-
I. S. Dhillon, Y. Guan, and B. Kulis. A unified view of kernel k-means, spectral clustering and graph partitioning. Technical report, TR-04-25, UTCS, 2004.
-
(2004)
-
-
Dhillon, I.S.1
Guan, Y.2
Kulis, B.3
-
8
-
-
0001493668
-
Asymptotics of graphical projection pursuit
-
P. Diaconis and D. Freedman. Asymptotics of graphical projection pursuit. Annuals of Statistics, 12:793-815, 1984.
-
(1984)
Annuals of Statistics
, vol.12
, pp. 793-815
-
-
Diaconis, P.1
Freedman, D.2
-
15
-
-
0041753016
-
On almost linearity of low dimensional projections from high dimensional data
-
P. Hall and K. Li. On almost linearity of low dimensional projections from high dimensional data. Annuals of Statistics, 21:867-889, 1993.
-
(1993)
Annuals of Statistics
, vol.21
, pp. 867-889
-
-
Hall, P.1
Li, K.2
-
20
-
-
8844278523
-
Learning the kernel matrix with semidefinite programming
-
G. Lanckriet, N. Cristianini, P. Bartlett, L. E. Ghaoui, and M. I. Jordan. Learning the kernel matrix with semidefinite programming. Journal of Machine Learning Research, 5:27-72, 2004.
-
(2004)
Journal of Machine Learning Research
, vol.5
, pp. 27-72
-
-
Lanckriet, G.1
Cristianini, N.2
Bartlett, P.3
Ghaoui, L.E.4
Jordan, M.I.5
-
23
-
-
2342517502
-
Think globally, fit locally: Unsupervised learning of low dimensional manifolds
-
L. K. Saul and S. T. Roweis. Think globally, fit locally: Unsupervised learning of low dimensional manifolds. Journal of Machine Learning Research, 4:119-155, 2003.
-
(2003)
Journal of Machine Learning Research
, vol.4
, pp. 119-155
-
-
Saul, L.K.1
Roweis, S.T.2
-
26
-
-
84937544784
-
Adjustment learning and relevant component analysis
-
London, UK, Springer-Verlag
-
N. Shental, T. Hertz, D. Weinshall, and M. Pavel. Adjustment learning and relevant component analysis. In Proceedings of the Seventh European Conference on Computer Vision, pages 776-792, London, UK, 2002. Springer-Verlag.
-
(2002)
Proceedings of the Seventh European Conference on Computer Vision
, pp. 776-792
-
-
Shental, N.1
Hertz, T.2
Weinshall, D.3
Pavel, M.4
-
28
-
-
33745776113
-
Large Scale Multiple Kernel Learning
-
July
-
S. Sonnenburg, G. Rätsch, C. Schäfer, and B. Schölkopf. Large Scale Multiple Kernel Learning. Journal of Machine Learning Research, 7:1531-1565, July 2006.
-
(2006)
Journal of Machine Learning Research
, vol.7
, pp. 1531-1565
-
-
Sonnenburg, S.1
Rätsch, G.2
Schäfer, C.3
Schölkopf, B.4
-
29
-
-
0034704229
-
A global geometric framework for nonlinear dimensionality reduction
-
J. Tenenbaum, V. de Silva, and J. Langford. A global geometric framework for nonlinear dimensionality reduction. Science, 290(5500):2319-2323, 2000.
-
(2000)
Science
, vol.290
, Issue.5500
, pp. 2319-2323
-
-
Tenenbaum, J.1
de Silva, V.2
Langford, J.3
-
34
-
-
35148876898
-
Distance metric learning: A comprehensive survey
-
Technical report, Department of Computer Science and Engineering, Michigan State University
-
L. Yang and R. Jin. Distance metric learning: A comprehensive survey. Technical report, Department of Computer Science and Engineering, Michigan State University, 2006.
-
(2006)
-
-
Yang, L.1
Jin, R.2
-
38
-
-
0013246766
-
Spectral relaxation for k-means clustering
-
H. Zha, C. Ding, M. Gu, X. He, and H. Simon. Spectral relaxation for k-means clustering. In Advances in Neural Information Processing Systems, 2001.
-
(2001)
Advances in Neural Information Processing Systems
-
-
Zha, H.1
Ding, C.2
Gu, M.3
He, X.4
Simon, H.5
|