메뉴 건너뛰기




Volumn 3, Issue 2, 2011, Pages 142-154

Fast approximate max-n Monte Carlo tree search for Ms Pac-Man

Author keywords

Max n; Monte Carlo; Monte Carlo tree search (MCTS); Pac Man

Indexed keywords

MAX-N; MONTE CARLO; ORDERS OF MAGNITUDE; PAC-MAN; REAL-TIME DECISION MAKING; TREE REPRESENTATION; TREE SEARCH;

EID: 79959242883     PISSN: 1943068X     EISSN: None     Source Type: Journal    
DOI: 10.1109/TCIAIG.2011.2144597     Document Type: Article
Times cited : (42)

References (38)
  • 1
    • 34547971839 scopus 로고    scopus 로고
    • Efficient selectivity and backup operators in Monte-Carlo tree search
    • R. Coulom, "Efficient selectivity and backup operators in Monte-Carlo tree search," in Proc. 5th Int. Conf. Comput. Games, 2006, pp. 72-83.
    • (2006) Proc. 5th Int. Conf. Comput. Games , pp. 72-83
    • Coulom, R.1
  • 3
    • 71549126935 scopus 로고    scopus 로고
    • CadiaPlayer: A simulation-based general game player
    • Mar.
    • Y. Bjornsson and H. Finnsson, "CadiaPlayer: A simulation-based general game player," IEEE Trans. Comput. Intell. AI Games, vol. 1, no. 1, pp. 4-15, Mar. 2009.
    • (2009) IEEE Trans. Comput. Intell. AI Games , vol.1 , Issue.1 , pp. 4-15
    • Bjornsson, Y.1    Finnsson, H.2
  • 7
    • 38349162555 scopus 로고    scopus 로고
    • Learning to play using low-complexity rule-based policies
    • Dec.
    • I. Szita and A. Lorincz, "Learning to play using low-complexity rule-based policies," J. Artif. Intell. Res., vol. 30, no. 1, pp. 659-684, Dec. 2007.
    • (2007) J. Artif. Intell. Res. , vol.30 , Issue.1 , pp. 659-684
    • Szita, I.1    Lorincz, A.2
  • 9
    • 84901386407 scopus 로고    scopus 로고
    • Learning to play pac-man: An evolutionary, rule-based approach
    • M. Gallagher and A. Ryan, "Learning to play Pac-Man: An evolutionary, rule-based approach," in Proc. IEEE Congr. Evol. Comput., 2003, pp. 2462-2469.
    • (2003) Proc. IEEE Congr. Evol. Comput. , pp. 2462-2469
    • Gallagher, M.1    Ryan, A.2
  • 10
    • 34548779606 scopus 로고    scopus 로고
    • Evolving pac-man players: Can we learn from raw input?
    • M. L. M. Gallagher, "Evolving Pac-Man players: Can we learn from raw input?," in Proc. IEEE Symp. Comput. Intell. Games, 2007, pp. 282-287.
    • (2007) Proc. IEEE Symp. Comput. Intell. Games , pp. 282-287
    • Gallagher, M.L.M.1
  • 12
    • 80053632021 scopus 로고    scopus 로고
    • Evolving a neural network location evaluator to play ms pac-man
    • S. M. Lucas, "Evolving a neural network location evaluator to play Ms Pac-Man," in Proc. IEEE Symp. Comput. Intell. Games, 2005, pp. 203-210.
    • (2005) Proc. IEEE Symp. Comput. Intell. Games , pp. 203-210
    • Lucas, S.M.1
  • 14
    • 71549156557 scopus 로고    scopus 로고
    • Evolution versus temporal difference learning for learning to play ms pac-man
    • P. Burrow and S. Lucas, "Evolution versus temporal difference learning for learning to play Ms Pac-Man," in Proc. 5th Int. Conf. Comput. Intell. Games, 2009, pp. 53-60.
    • (2009) Proc. 5th Int. Conf. Comput. Intell. Games , pp. 53-60
    • Burrow, P.1    Lucas, S.2
  • 15
    • 78650201820 scopus 로고    scopus 로고
    • Evolving diverse ms pac-man playing agents using genetic programming
    • A. M. Alhejali and S. Lucas, "Evolving diverse Ms Pac-Man playing agents using genetic programming," in Proc. U.K. Workshop Comput. Intell., 2010.
    • (2010) Proc. U.K. Workshop Comput. Intell.
    • Alhejali, A.M.1    Lucas, S.2
  • 18
    • 0036568025 scopus 로고    scopus 로고
    • Finite-time analysis of the multiarmed bandit problem
    • DOI 10.1023/A:1013689704352, Computational Learning Theory
    • P. Auer, N. Cesa-Bianchi, and P. Fischer, "Finite-time analysis of the multiarmed bandit problem," Mach. Learn., vol. 47, no. 2, pp. 235-256, 2002. (Pubitemid 34126111)
    • (2002) Machine Learning , vol.47 , Issue.2-3 , pp. 235-256
    • Auer, P.1    Cesa-Bianchi, N.2    Fischer, P.3
  • 21
    • 77952733029 scopus 로고    scopus 로고
    • 9 9 go as black with komi 7.5: At last some games won against top players in the disadvantageous situation
    • S. Billouet, J. Hoock, C.-S. Lee, O. Teytaud, and S.-J. Yen, "9 9 Go as black with komi 7.5: At last some games won against top players in the disadvantageous situation," ICGA J., vol. 32, no. 3, pp. 241-246, 2009.
    • (2009) ICGA J. , vol.32 , Issue.3 , pp. 241-246
    • Billouet, S.1    Hoock, J.2    Lee, C.-S.3    Teytaud, O.4    Yen, S.-J.5
  • 22
    • 77954885565 scopus 로고    scopus 로고
    • Human vs. Computer go competition in FUZZ-IEEE 2009
    • S.-J. Yen, C.-S. Lee, and O. Teytaud, "Human vs. Computer Go competition in FUZZ-IEEE 2009," ICGA J., vol. 32, no. 3, pp. 178-180, 2009.
    • (2009) ICGA J. , vol.32 , Issue.3 , pp. 178-180
    • Yen, S.-J.1    Lee, C.-S.2    Teytaud, O.3
  • 23
    • 79959210668 scopus 로고    scopus 로고
    • [Online]. Available
    • R. Blincoe, "Go, going, gone?," The Guardian, 2006 [Online]. Available: http://www.guardian.co.uk/technology/2009/apr/30/games-soft-ware- mogo/print
    • (2006) Go, Going, Gone?
    • Blincoe, R.1
  • 24
    • 70349287633 scopus 로고    scopus 로고
    • Computing ELO ratings of move patterns in the game of go
    • R. Coulom, "Computing ELO ratings of move patterns in the game of Go," in Proc. Comput. Games Workshop, 2007.
    • (2007) Proc. Comput. Games Workshop
    • Coulom, R.1
  • 26
    • 78951484236 scopus 로고    scopus 로고
    • FUEGO: An open-source framework for board games and go engine based on Monte-Carlo tree search
    • Dec.
    • M. Enzenberger, M. Muller, B. Arneson, and R. Segal, "FUEGO: An open-source framework for board games and go engine based on Monte-Carlo tree search," IEEE Trans. Comput. Intell. AI Games, vol. 2, no. 4, pp. 259-270, Dec. 2010.
    • (2010) IEEE Trans. Comput. Intell. AI Games , vol.2 , Issue.4 , pp. 259-270
    • Enzenberger, M.1    Muller, M.2    Arneson, B.3    Segal, R.4
  • 28
    • 70349273741 scopus 로고    scopus 로고
    • Experiments with Monte Carlo othello
    • DOI 10.1109/CEC.2007.4425000, 4425000, 2007 IEEE Congress on Evolutionary Computation, CEC 2007
    • P. Hingston and M. Masek, "Experiments with Monte Carlo Othello," in Proc. IEEE Congr. Evol. Comput., 2007, pp. 4059-4064. (Pubitemid 351371926)
    • (2008) 2007 IEEE Congress on Evolutionary Computation, CEC 2007 , pp. 4059-4064
    • Hingston, P.1    Masek, M.2
  • 29
    • 70549113669 scopus 로고    scopus 로고
    • Monte-Carlo tree search in poker using expected reward distributions
    • G. V. den Broeck, K. Driessens, and J. Ramon, "Monte-Carlo tree search in poker using expected reward distributions," in Proc. ACML, 2009, pp. 367-381.
    • (2009) Proc. ACML , pp. 367-381
    • Den Broeck, G.V.1    Driessens, K.2    Ramon, J.3
  • 33
    • 71549133876 scopus 로고    scopus 로고
    • UCT for tactical assault planning in real-time strategy games
    • R. Balla and A. Fern, "UCT for tactical assault planning in real-time strategy games," in Proc. 21st Int. Joint Conf. Artif. Intell., 2009, pp. 40-45.
    • (2009) Proc. 21st Int. Joint Conf. Artif. Intell. , pp. 40-45
    • Balla, R.1    Fern, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.