메뉴 건너뛰기




Volumn 711, Issue , 2011, Pages 103-116

Does genomic imprinting play a role in autoimmunity?

Author keywords

[No Author keywords available]

Indexed keywords

DNA METHYLTRANSFERASE; DNA METHYLTRANSFERASE 1; DNA METHYLTRANSFERASE 3; MICRORNA; TRANSCRIPTION FACTOR CTCF; UNCLASSIFIED DRUG; HISTONE;

EID: 79958273265     PISSN: 00652598     EISSN: None     Source Type: Book Series    
DOI: 10.1007/978-1-4419-8216-2_8     Document Type: Article
Times cited : (9)

References (84)
  • 1
    • 0025781281 scopus 로고
    • Historical study: Johann Gregor Mendel 1822-1884
    • discussion 26
    • Weiling F. Historical study: Johann Gregor Mendel 1822-1884. Am J Med Genet 1991; 40(1):1-25; discussion 26.
    • (1991) Am J Med Genet , vol.40 , Issue.1 , pp. 1-25
    • Weiling, F.1
  • 2
    • 0021237658 scopus 로고
    • Development of reconstituted mouse eggs suggests imprinting of the genome during gametogenesis
    • Surani MA, Barton SC, Norris ML. Development of reconstituted mouse eggs suggests imprinting of the genome during gametogenesis. Nature 1984; 308:548-550. (Pubitemid 14130845)
    • (1984) Nature , vol.308 , Issue.5959 , pp. 548-550
    • Surani, M.A.H.1    Barton, S.C.2    Norris, M.L.3
  • 3
    • 0021139084 scopus 로고
    • Completion of mouse embryogenesis requires both the maternal and paternal genomes
    • McGrath J, Solter D. Completion of mouse embryogenesis requires both the maternal and paternal genomes. Cell 1984; 37(1):179-183. (Pubitemid 14079849)
    • (1984) Cell , vol.37 , Issue.1 , pp. 179-183
    • McGrath, J.1    Solter, D.2
  • 4
    • 0022391691 scopus 로고
    • Differential activity of maternally and paternally derived chromosome regions in mice
    • DOI 10.1038/315496a0
    • Cattanach BM, Kirk M. Differential activity of maternally and paternally derived chromosome regions in mice. Nature 1985; 315(6019): 496-498. (Pubitemid 15232865)
    • (1985) Nature , vol.315 , Issue.6019 , pp. 496-498
    • Cattanach, B.M.1    Kirk, M.2
  • 7
    • 0033651946 scopus 로고    scopus 로고
    • Prader-Willi and Angelman syndromes: Sister imprinted disorders
    • Cassidy SB, Dykens E, Williams CA. Prader-Willi and Angelman syndromes: sister imprinted disorders. Am J Med Genet 2000; 97(2):136-146.
    • (2000) Am J Med Genet , vol.97 , Issue.2 , pp. 136-146
    • Cassidy, S.B.1    Dykens, E.2    Williams, C.A.3
  • 9
    • 0028914364 scopus 로고
    • Uniparental disomy 7 in Silver-Russell syndrome and primordial growth retardation
    • Kotzot D, Schmitt S, Bernasconi F et al. Uniparental disomy 7 in Silver-Russell syndrome and primordial growth retardation. Hum Mol Genet 1995; 4(4):583-587.
    • (1995) Hum Mol Genet , vol.4 , Issue.4 , pp. 583-587
    • Kotzot, D.1    Schmitt, S.2    Bernasconi, F.3
  • 10
    • 41149121472 scopus 로고    scopus 로고
    • Growth retardation versus overgrowth: Silver-Russell syndrome is genetically opposite to Beckwith-Wiedemann syndrome
    • EggermannT, Eggermann K, Schonherr N. Growth retardation versus overgrowth: Silver-Russell syndrome is genetically opposite to Beckwith-Wiedemann syndrome. Trends Genet 2008; 24(4):195-204.
    • (2008) Trends Genet , vol.24 , Issue.4 , pp. 195-204
    • Eggermann, T.1    Eggermann, K.2    Schonherr, N.3
  • 11
    • 34047093266 scopus 로고    scopus 로고
    • Convergent evolution of genomic imprinting in plants and mammals
    • DOI 10.1016/j.tig.2007.02.004, PII S0168952507000571
    • Feil R, Berger F. Convergent evolution of genomic imprinting in plants and mammals. Trends Genet 2007; 23(4): 192-199. (Pubitemid 46509542)
    • (2007) Trends in Genetics , vol.23 , Issue.4 , pp. 192-199
    • Feil, R.1    Berger, F.2
  • 13
    • 0027172684 scopus 로고
    • Parental-origin-specific epigenetic modification of the mouse H19 gene
    • DOI 10.1038/362751a0
    • Ferguson-Smith AC, Sasaki H, Cattanach BM et al. Parental-origin-specific epigenetic modification of the mouse H19 gene. Nature 1993; 362(6422):751-755. (Pubitemid 23125979)
    • (1993) Nature , vol.362 , Issue.6422 , pp. 751-755
    • Ferguson-Smith, A.C.1    Sasaki, H.2    Cattanach, B.M.3    Surani, M.A.4
  • 15
    • 0031638515 scopus 로고    scopus 로고
    • The host defence function of genomic methylation patterns
    • BestorTH. The host defence function of genomic methylation patterns. Novartis Found Symp 1998; 214:187-195.
    • (1998) Novartis Found Symp , vol.214 , pp. 187-195
    • Bestort, H.1
  • 16
    • 40049094942 scopus 로고    scopus 로고
    • Mammalian DNA methyltransferases: A structural perspective
    • DOI 10.1016/j.str.2008.01.004, PII S096921260800049X
    • Cheng X, Blumenthal RM. Mammalian DNA methyltransferases: a structural perspective. Structure 2008; 16(3):341-350. (Pubitemid 351324115)
    • (2008) Structure , vol.16 , Issue.3 , pp. 341-350
    • Cheng, X.1    Blumenthal, R.M.2
  • 17
    • 40749127618 scopus 로고    scopus 로고
    • Preimplantation expression of the somatic form of Dnmt1 suggests a role in the inheritance of genomic imprints
    • Cirio MC, Ratnam S, Ding F et al. Preimplantation expression of the somatic form of Dnmt1 suggests a role in the inheritance of genomic imprints. BMC Dev Biol 2008; 8:9.
    • (2008) BMC Dev Biol , vol.8 , pp. 9
    • Cirio, M.C.1    Ratnam, S.2    Ding, F.3
  • 18
    • 0032769445 scopus 로고    scopus 로고
    • Cloning, expression and chromosome locations of the human DNMT3 gene family
    • DOI 10.1016/S0378-1119(99)00252-8, PII S0378111999002528
    • Xie S, Wang Z, Okano M et al. Cloning, expression and chromosome locations of the human DNMT3 gene family. Gene 1999; 236(1):87-95. (Pubitemid 29347034)
    • (1999) Gene , vol.236 , Issue.1 , pp. 87-95
    • Xie, S.1    Wang, Z.2    Okano, M.3    Nogami, M.4    Li, Y.5    He, W.-W.6    Okumura, K.7    Li, E.8
  • 19
    • 3042641718 scopus 로고    scopus 로고
    • DNMT3L stimulates the DNA methylation activity of Dnmt3a and Dnmt3b through a direct interaction
    • DOI 10.1074/jbc.M400181200
    • Suetake I, Shinozaki F, Miyagawa J et al. DNMT3L stimulates the DNA methylation activity of Dnmt3a and Dnmt3b through a direct interaction. J Biol Chem 2004; 279(26):27816-27823. (Pubitemid 38812623)
    • (2004) Journal of Biological Chemistry , vol.279 , Issue.26 , pp. 27816-27823
    • Suetake, I.1    Shinozaki, F.2    Miyagawa, J.3    Takeshima, H.4    Tajima, S.5
  • 20
    • 0035930660 scopus 로고    scopus 로고
    • Dnmt3L and the establishment of maternal genomic imprints
    • Bourc'his D, Xu GL, Lin CS et al. Dnmt3L and the establishment of maternal genomic imprints. Science 2001; 294(5551):2536-2539.
    • (2001) Science , vol.294 , Issue.5551 , pp. 2536-2539
    • Bourc'His, D.1    Xu, G.L.2    Lin, C.S.3
  • 21
    • 3042584653 scopus 로고    scopus 로고
    • Essential role for de novo DNA methyltransferase Dnmt3a in paternal and maternal imprinting
    • DOI 10.1038/nature02633
    • Kaneda M, Okano M, Hata K et al. Essential role for de novo DNA methyltransferase Dnmt3a in paternal and maternal imprinting. Nature 2004; 429(6994):900-903. (Pubitemid 38843304)
    • (2004) Nature , vol.429 , Issue.6994 , pp. 900-903
    • Kaneda, M.1    Okano, M.2    Hata, K.3    Sado, T.4    Tsujimoto, H.5    Li, E.6    Sasaki, H.7
  • 22
    • 70350046301 scopus 로고    scopus 로고
    • Rethinking how DNA methylation patterns are maintained
    • Jones PA, Liang G. Rethinking how DNA methylation patterns are maintained. Nat Rev Genet 2009; 10(11):805-811.
    • (2009) Nat Rev Genet , vol.10 , Issue.11 , pp. 805-811
    • Jones, P.A.1    Liang, G.2
  • 23
    • 33847076849 scopus 로고    scopus 로고
    • Chromatin modifications and their function
    • DOI 10.1016/j.cell.2007.02.005, PII S0092867407001845
    • Kouzarides T. Chromatin modifications and their function. Cell 2007; 128(4):693-705. (Pubitemid 46273577)
    • (2007) Cell , vol.128 , Issue.4 , pp. 693-705
    • Kouzarides, T.1
  • 24
    • 9644281546 scopus 로고    scopus 로고
    • Imprinting along the Kcnq1 domain on mouse chromosome 7 involves repressive histone methylation and recruitment of Polycomb group complexes
    • DOI 10.1038/ng1467
    • Umlauf D, Goto Y, Cao R et al. Imprinting along the Kcnq1 domain on mouse chromosome 7 involves repressive histone methylation and recruitment of Polycomb group complexes. Nat Genet 2004; 36(12):1296-1300. (Pubitemid 39577938)
    • (2004) Nature Genetics , vol.36 , Issue.12 , pp. 1296-1300
    • Umlauf, D.1    Goto, Y.2    Cao, R.3    Cerqueira, F.4    Wagschal, A.5    Zhang, Y.6    Feil, R.7
  • 25
    • 33646265537 scopus 로고    scopus 로고
    • Limited evolutionary conservation of imprinting in the human placenta
    • Monk D, Arnaud P, Apostolidou S et al. Limited evolutionary conservation of imprinting in the human placenta. Proc Natl Acad Sci USA 2006; 103(17):6623-6628.
    • (2006) Proc Natl Acad Sci USA , vol.103 , Issue.17 , pp. 6623-6628
    • Monk, D.1    Arnaud, P.2    Apostolidou, S.3
  • 26
    • 33846972618 scopus 로고    scopus 로고
    • Differential histone modifications mark mouse imprinting control regions during spermatogenesis
    • Delaval K, Govin J, Cerqueira F et al. Differential histone modifications mark mouse imprinting control regions during spermatogenesis. EMBO J 2007; 26(3):720-729.
    • (2007) EMBO J , vol.26 , Issue.3 , pp. 720-729
    • Delaval, K.1    Govin, J.2    Cerqueira, F.3
  • 27
    • 55349100420 scopus 로고    scopus 로고
    • Polycomb group proteins Ezh2 and Rnf2 direct genomic contraction and imprinted repression in early mouse embryos
    • Terranova R, Yokobayashi S, Stadler MB et al. Polycomb group proteins Ezh2 and Rnf2 direct genomic contraction and imprinted repression in early mouse embryos. Dev Cell 2008; 15(5):668-679.
    • (2008) Dev Cell , vol.15 , Issue.5 , pp. 668-679
    • Terranova, R.1    Yokobayashi, S.2    Stadler, M.B.3
  • 30
    • 48949083986 scopus 로고    scopus 로고
    • Comparative analysis of human chromosome 7q21 and mouse proximal chromosome 6 reveals a placental-specific imprinted gene, TFPI2/Tfpi2, which requires EHMT2 and EED for allelic-silencing
    • Monk D, Wagschal A, Arnaud P et al. Comparative analysis of human chromosome 7q21 and mouse proximal chromosome 6 reveals a placental-specific imprinted gene, TFPI2/Tfpi2, which requires EHMT2 and EED for allelic-silencing. Genome Res 2008; 18(8):1270-1281.
    • (2008) Genome Res , vol.18 , Issue.8 , pp. 1270-1281
    • Monk, D.1    Wagschal, A.2    Arnaud, P.3
  • 31
    • 44649163849 scopus 로고    scopus 로고
    • Mechanisms involved in the regulation of histone lysine demethylases
    • Lan F, Nottke AC, Shi Y. Mechanisms involved in the regulation of histone lysine demethylases. Curr Opin Cell Biol 2008; 20(3):316-325.
    • (2008) Curr Opin Cell Biol , vol.20 , Issue.3 , pp. 316-325
    • Lan, F.1    Nottke, A.C.2    Shi, Y.3
  • 32
    • 64549139803 scopus 로고    scopus 로고
    • Reversible acetylation of chromatin: Implication in regulation of gene expression, disease and therapeutics
    • Selvi RB, Kundu TK. Reversible acetylation of chromatin: implication in regulation of gene expression, disease and therapeutics. Biotechnol J 2009; 4(3):375-390.
    • (2009) Biotechnol J , vol.4 , Issue.3 , pp. 375-390
    • Selvi, R.B.1    Kundu, T.K.2
  • 33
    • 70349780606 scopus 로고    scopus 로고
    • The emerging therapeutic potential ofhistone methyltransferase and demethylase inhibitors
    • Spannhoff A, Hauser AT, Heinke R et al. The emerging therapeutic potential ofhistone methyltransferase and demethylase inhibitors. Chem Med Chem 2009; 4(10):1568-1582.
    • (2009) Chem Med Chem , vol.4 , Issue.10 , pp. 1568-1582
    • Spannhoff, A.1    Hauser, A.T.2    Heinke, R.3
  • 34
    • 70349272130 scopus 로고    scopus 로고
    • KDM1B is a histone H3K4 demethylase required to establish maternal genomic imprints
    • Ciccone DN, Su H, Hevi S et al. KDM1B is a histone H3K4 demethylase required to establish maternal genomic imprints. Nature 2009; 461(7262):415-418.
    • (2009) Nature , vol.461 , Issue.7262 , pp. 415-418
    • Ciccone, D.N.1    Su, H.2    Hevi, S.3
  • 35
    • 0027420362 scopus 로고
    • Disruption of insulin-like growth factor 2 imprinting in Beckwith- Wiedemann syndrome
    • DOI 10.1038/ng1093-143
    • Weksberg R, Shen DR, Fei YL et al. Disruption of insulin-like growth factor 2 imprinting in Beckwith-Wiedemann syndrome. Nat Genet 1993; 5(2):143-150. (Pubitemid 23293449)
    • (1993) Nature Genetics , vol.5 , Issue.2 , pp. 143-150
    • Weksberg, R.1    Ding Ren Shen2    Yan Ling Fei3    Qian Li Song4    Squire, J.5
  • 36
    • 0027285258 scopus 로고
    • Relaxation of insulin-like growth factor II gene imprinting implicated in Wilms' tumour
    • DOI 10.1038/362749a0
    • Ogawa O, Eccles MR, Szeto J et al. Relaxation of insulin-like growth factor II gene imprinting implicated in Wilms' tumour. Nature 1993; 362(6422):749-751. (Pubitemid 23125978)
    • (1993) Nature , vol.362 , Issue.6422 , pp. 749-751
    • Ogawa, O.1    Eccles, M.R.2    Szeto, J.3    McNoe, L.A.4    Yun, K.5    Maw, M.A.6    Smith, P.J.7    Reeve, A.E.8
  • 38
    • 4444365791 scopus 로고    scopus 로고
    • Microdeletions in the human H19 DMR result in loss of IGF2 imprinting and Beckwith-Wiedemann syndrome
    • DOI 10.1038/ng1410
    • Sparago A, Cerrato F, Vernucci M et al. Microdeletions in the human H19 DMR result in loss of IGF2 imprinting and Beckwith-Wiedemann syndrome. Nat Genet 2004; 36(9):958-960. (Pubitemid 39167491)
    • (2004) Nature Genetics , vol.36 , Issue.9 , pp. 958-960
    • Sparago, A.1    Cerrato, F.2    Vernucci, M.3    Ferrero, G.B.4    Silengo, M.C.5    Riccio, A.6
  • 39
    • 70350620718 scopus 로고    scopus 로고
    • Phenotypic discordance upon paternal or maternal transmission of duplications of the 11p15 imprinted regions
    • Bliek J, Snijder S, Maas SM et al. Phenotypic discordance upon paternal or maternal transmission of duplications of the 11p15 imprinted regions. Eur J Med Genet 2009; 52(6):404-408.
    • (2009) Eur J Med Genet , vol.52 , Issue.6 , pp. 404-408
    • Bliek, J.1    Snijder, S.2    Maas, S.M.3
  • 40
    • 48249141249 scopus 로고    scopus 로고
    • Conservation ofthe H19 noncoding RNA and H19-IGF2 imprinting mechanism in therians
    • Smits G, Mungall AJ, Griffiths-Jones S et al. Conservation ofthe H19 noncoding RNA and H19-IGF2 imprinting mechanism in therians. Nat Genet 2008; 40(8):971-976.
    • (2008) Nat Genet , vol.40 , Issue.8 , pp. 971-976
    • Smits, G.1    Mungall, A.J.2    Griffiths-Jones, S.3
  • 42
    • 33645454706 scopus 로고    scopus 로고
    • The H19 gene: Regulation and function of a noncoding RNA
    • Gabory A, Ripoche MA, Yoshimizu T et al. The H19 gene: regulation and function of a noncoding RNA. Cytogenet Genome Res 2006; 113(1-4):188-193.
    • (2006) Cytogenet Genome Res , vol.113 , Issue.1-4 , pp. 188-193
    • Gabory, A.1    Ripoche, M.A.2    Yoshimizu, T.3
  • 43
    • 33847271696 scopus 로고    scopus 로고
    • The imprinted H19 noncoding RNA is a primary microRNA precursor
    • DOI 10.1261/rna.351707
    • Cai X, Cullen BR. The imprinted H19 noncoding RNA is a primary microRNA precursor. RNA 2007; 13(3):313-316. (Pubitemid 46327534)
    • (2007) RNA , vol.13 , Issue.3 , pp. 313-316
    • Cai, X.1    Cullen, B.R.2
  • 44
    • 0029024277 scopus 로고
    • Disruption of imprinting caused by deletion of the H19 gene region in mice
    • Leighton PA, Ingram RS, Eggenschwiler J et al. Disruption of imprinting caused by deletion of the H19 gene region in mice. Nature 1995; 375(6526):34-39.
    • (1995) Nature , vol.375 , Issue.6526 , pp. 34-39
    • Leighton, P.A.1    Ingram, R.S.2    Eggenschwiler, J.3
  • 46
    • 3543018516 scopus 로고    scopus 로고
    • Interaction between differentially methylated regions partitions the imprinted genes Igf2 and H19 into parent-specific chromatin loops
    • DOI 10.1038/ng1402
    • Murrell A, Heeson S, Reik W. Interaction between differentially methylated regions partitions the imprinted genes Igf2 and H19 into parent-specific chromatin loops. Nat Genet 2004; 36(8):889-893. (Pubitemid 39014109)
    • (2004) Nature Genetics , vol.36 , Issue.8 , pp. 889-893
    • Murrell, A.1    Heeson, S.2    Reik, W.3
  • 48
    • 0034713275 scopus 로고    scopus 로고
    • CTCF mediates methylation-sensitive enhancer-blocking activity at the H19/Igf2 locus
    • DOI 10.1038/35013106
    • Hark AT, Schoenherr CJ, Katz DJ et al. CTCF mediates methylation- sensitive enhancer-blocking activity at the H19/Igf2 locus. Nature 2000; 405(6785):486-489. (Pubitemid 30367428)
    • (2000) Nature , vol.405 , Issue.6785 , pp. 486-489
    • Hark, A.T.1    Schoenherr, C.J.2    Katz, D.J.3    Ingram, R.S.4    Levorse, J.M.5    Tilghman, S.M.6
  • 49
    • 0034713375 scopus 로고    scopus 로고
    • Methylation of a CTCF-dependent boundary controls imprinted expression of the Igf2 gene
    • DOI 10.1038/35013100
    • Bell AC, Felsenfeld G. Methylation of a CTCF-dependent boundary controls imprinted expression of the Igf2 gene. Nature 2000; 405(6785):482-485. (Pubitemid 30367427)
    • (2000) Nature , vol.405 , Issue.6785 , pp. 482-485
    • Bell, A.C.1    Felsenfeld, G.2
  • 51
    • 33645814398 scopus 로고    scopus 로고
    • CTCF mediates interchromosomal colocalization between Igf2/H19 and Wsb1/Nf1
    • Ling JQ, Li T, Hu JF et al. CTCF mediates interchromosomal colocalization between Igf2/H19 and Wsb1/Nf1. Science 2006; 312(5771):269-272.
    • (2006) Science , vol.312 , Issue.5771 , pp. 269-272
    • Ling, J.Q.1    Li, T.2    Hu, J.F.3
  • 53
    • 70350138340 scopus 로고    scopus 로고
    • H19 acts as a trans regulator of the imprinted gene network controlling growth in mice
    • Gabory A, Ripoche MA, Le Digarcher A et al. H19 acts as a trans regulator of the imprinted gene network controlling growth in mice. Development 2009;136(20):3413-3421.
    • (2009) Development , vol.136 , Issue.20 , pp. 3413-3421
    • Gabory, A.1    Ripoche, M.A.2    Le Digarcher, A.3
  • 54
    • 72749105143 scopus 로고    scopus 로고
    • Nonallelic transvection of multiple imprinted loci is organized by the H19 imprinting control region during germline development
    • Sandhu KS, Shi C, Sjolinder M et al. Nonallelic transvection of multiple imprinted loci is organized by the H19 imprinting control region during germline development. Genes Dev 2009; 23(22):2598-2603.
    • (2009) Genes Dev , vol.23 , Issue.22 , pp. 2598-2603
    • Sandhu, K.S.1    Shi, C.2    Sjolinder, M.3
  • 55
    • 73649145481 scopus 로고    scopus 로고
    • Cohesin is required for higher-order chromatin conformation at the imprinted IGF2-H19 locus
    • Nativio R, Wendt KS, Ito Y et al. Cohesin is required for higher-order chromatin conformation at the imprinted IGF2-H19 locus. PLoS Genet 2009; 5(11):e1000739.
    • (2009) PLoS Genet , vol.5 , Issue.11
    • Nativio, R.1    Wendt, K.S.2    Ito, Y.3
  • 56
    • 59849122478 scopus 로고    scopus 로고
    • Cutting edge: Developmental stage-specific recruitment of cohesin to CTCF sites throughout immunoglobulin loci during B lymphocyte development
    • Degner SC, Wong TP, Jankevicius G et al. Cutting edge: developmental stage-specific recruitment of cohesin to CTCF sites throughout immunoglobulin loci during B lymphocyte development. J Immunol 2009; 182(1):44-48.
    • (2009) J Immunol , vol.182 , Issue.1 , pp. 44-48
    • Degner, S.C.1    Wong, T.P.2    Jankevicius, G.3
  • 57
    • 67650997080 scopus 로고    scopus 로고
    • Cohesins form chromosomal cis-interactions at the developmentally regulated IFNG locus
    • Hadjur S, Williams LM, Ryan NK et al. Cohesins form chromosomal cis-interactions at the developmentally regulated IFNG locus. Nature 2009; 460(7253):410-413.
    • (2009) Nature , vol.460 , Issue.7253 , pp. 410-413
    • Hadjur, S.1    Williams, L.M.2    Ryan, N.K.3
  • 59
    • 73349115848 scopus 로고    scopus 로고
    • The imprinted DLK1-MEG3 gene region on chromosome 14q32.2 alters susceptibility to type 1 diabetes
    • Wallace C, Smyth DJ, Maisuria-Armer M et al. The imprinted DLK1-MEG3 gene region on chromosome 14q32.2 alters susceptibility to type 1 diabetes. Nat Genet 2010; 42(1):68-71.
    • (2010) Nat Genet , vol.42 , Issue.1 , pp. 68-71
    • Wallace, C.1    Smyth, D.J.2    Maisuria-Armer, M.3
  • 61
    • 0036381991 scopus 로고    scopus 로고
    • Non transmitted maternal HLA DQ2 or DQ8 alleles and risk of Type i diabetes in offspring: The importance of foetal or post partum exposure to diabetogenic molecules
    • Pani MA, Van Autreve J, Van der Auwera BJ et al. Non transmitted maternal HLA DQ2 or DQ8 alleles and risk of Type I diabetes in offspring: the importance of foetal or post partum exposure to diabetogenic molecules. Diabetologia 2002; 45(9):1340-1343.
    • (2002) Diabetologia , vol.45 , Issue.9 , pp. 1340-1343
    • Peyrat, M.A.1    Van Autreve, J.2    Van Der Auwera, B.J.3
  • 62
    • 58849087013 scopus 로고    scopus 로고
    • Pani MA, Van Autreve J, Van der Auwera BJ, Gorus FK, Badenhoop K (2002) Nontransmitted maternal HLA DQ2 or DQ8 alleles and risk of Type i diabetes in offspring: The importance of foetal or post partum exposure to diabetogenic molecules
    • Hermann R, Veijola R, Sipila I et al. -to: Pani MA, Van Autreve J, Van Der Auwera BJ, Gorus FK, Badenhoop K (2002) Nontransmitted maternal HLA DQ2 or DQ8 alleles and risk of Type I diabetes in offspring: the importance of foetal or post partum exposure to diabetogenic molecules. Diabetologia 2003; 46(4):588-589.
    • (2003) Diabetologia , vol.46 , Issue.4 , pp. 588-589
    • Hermann, R.1    Veijola, R.2    Sipila, I.3
  • 63
    • 2342595998 scopus 로고    scopus 로고
    • Pani MA, Van Autreve J, Van der Auwera BJ, Gorus FK, Badenhoop K (2002) Nontransmitted maternal HLA DQ2 or DQ8 alleles and risk of Type i diabetes in offspring: The importance of foetal or post partum exposure to diabetogenic molecules
    • Lambert AP, Gillespie KM, Bingley PJ et al. -to: Pani MA, Van Autreve J, Van Der Auwera BJ, Gorus FK, Badenhoop K (2002) Nontransmitted maternal HLA DQ2 or DQ8 alleles and risk of Type I diabetes in offspring: the importance of foetal or post partum exposure to diabetogenic molecules. Diabetologia 2003; 46(4):590-591.
    • (2003) Diabetologia , vol.46 , Issue.4 , pp. 590-591
    • Lambert, A.P.1    Gillespie, K.M.2    Bingley, P.J.3
  • 65
    • 33645820241 scopus 로고    scopus 로고
    • Imprinting of IGF2 P0 transcript and novel alternatively spliced INS-IGF2 isoforms show differences between mouse and human
    • Monk D, Sanches R, Arnaud P et al. Imprinting of IGF2 P0 transcript and novel alternatively spliced INS-IGF2 isoforms show differences between mouse and human. Hum Mol Genet 2006; 15(8):1259-1269.
    • (2006) Hum Mol Genet , vol.15 , Issue.8 , pp. 1259-1269
    • Monk, D.1    Sanches, R.2    Arnaud, P.3
  • 68
    • 0028871202 scopus 로고
    • Susceptibility to human type 1 diabetes at IDDM2 is determined by tandem repeat variation at the insulin gene minisatellite locus
    • Bennett ST, LucassenAM, Gough SC et al. Susceptibility to human type 1 diabetes at IDDM2 is determined by tandem repeat variation at the insulin gene minisatellite locus. Nat Genet 1995; 9(3):284-292.
    • (1995) Nat Genet , vol.9 , Issue.3 , pp. 284-292
    • Bennett, S.T.1    Gough, S.C.2
  • 70
    • 0029113470 scopus 로고
    • Genetic control of autoimmunity, lessons from twin studies
    • Worthington J, Silman AJ. Genetic control of autoimmunity, lessons from twin studies. Clin Exp Immunol 1995; 101(3):390-392.
    • (1995) Clin Exp Immunol , vol.101 , Issue.3 , pp. 390-392
    • Worthington, J.1    Silman, A.J.2
  • 71
    • 0028806630 scopus 로고
    • Psoriatic arthritis
    • Winchester R. Psoriatic arthritis. Dermatol Clin 1995; 13(4):779-792.
    • (1995) Dermatol Clin , vol.13 , Issue.4 , pp. 779-792
    • Winchester, R.1
  • 73
    • 0030784426 scopus 로고    scopus 로고
    • Differences in risk of Crohn's disease in offspring of mothers and fathers with inflammatory bowel disease
    • Akolkar PN, Gulwani-Akolkar B, Heresbach D et al. Differences in risk of Crohn's disease in offspring of mothers and fathers with inflammatory bowel disease. Am J Gastroenterol 1997; 92(12):2241-2244.
    • (1997) Am J Gastroenterol , vol.92 , Issue.12 , pp. 2241-2244
    • Akolkar, P.N.1    Gulwani-Akolkar, B.2    Heresbach, D.3
  • 74
    • 0036119350 scopus 로고    scopus 로고
    • Maternal transmission of diabetes
    • DOI 10.1046/j.1464-5491.2002.00675.x
    • Alcolado JC, Laji K, Gill-Randall R. Maternal transmission of diabetes. Diabet Med 2002; 19(2):89-98. (Pubitemid 34225221)
    • (2002) Diabetic Medicine , vol.19 , Issue.2 , pp. 89-98
    • Alcolado, J.C.1    Laji, K.2    Gill-Randall, R.3
  • 76
    • 38049039200 scopus 로고    scopus 로고
    • Joint linkage and imprinting analyses of GAW15 rheumatoid arthritis and gene expression data
    • Zhou X, Chen W, Swartz MD et al. Joint linkage and imprinting analyses of GAW15 rheumatoid arthritis and gene expression data. BMC Proc 2007; 1 Suppl 1:S53.
    • (2007) BMC Proc , vol.1 SUPPL. 1
    • Zhou, X.1    Chen, W.2    Swartz, M.D.3
  • 77
    • 80053613268 scopus 로고    scopus 로고
    • Loss of imprinting of IGF2 characterizes high IGF2mRNA-expressing type of Fibroblast-like Synoviocytes in Rheumatoid Arthritis
    • [Epub ahead of print]
    • Martin-Trujillo A, van Rietschoten JG, Timmer TC et al. Loss of imprinting of IGF2 characterizes high IGF2mRNA-expressing type of Fibroblast-like Synoviocytes in Rheumatoid Arthritis. Ann Rheum Dis 2009 [Epub ahead of print].
    • (2009) Ann Rheum Dis
    • Martin-Trujillo, A.1    Van Rietschoten, J.G.2    Timmer, T.C.3
  • 79
    • 0036215814 scopus 로고    scopus 로고
    • Loss of genomic imprinting of insulin-like growth factor 2 is strongly associated with cellular proliferation in normal hematopoietic cells
    • DOI 10.1016/S0301-472X(01)00797-4, PII S0301472X01007974
    • Hofmann WK, Takeuchi S, Frantzen MAet al. Loss of genomic imprinting of insulin-like growth factor 2 is strongly associated with cellular proliferation in normal hematopoietic cells. Exp Hematol 2002; 30(4):318-323. (Pubitemid 34286436)
    • (2002) Experimental Hematology , vol.30 , Issue.4 , pp. 318-323
    • Hofmann, W.-K.1    Takeuchi, S.2    Frantzen, M.A.3    Hoelzer, D.4    Koeffler, H.P.5
  • 81
    • 26944495173 scopus 로고    scopus 로고
    • MicroRNA function in animal development
    • DOI 10.1016/j.febslet.2005.07.070, PII S0014579305009373, RNAi: Mechanisms, Biology and Applications
    • Wienholds E, Plasterk RH. MicroRNA function in animal development. FEBS Lett2005; 579(26):5911-5922. (Pubitemid 41487106)
    • (2005) FEBS Letters , vol.579 , Issue.26 , pp. 5911-5922
    • Wienholds, E.1    Plasterk, R.H.A.2
  • 82
    • 20444398514 scopus 로고    scopus 로고
    • Potential roles for short RNAs in lymphocytes
    • DOI 10.1111/j.1440-1711.2005.01333.x
    • Chowdhury D, Novina CD. Potential roles for short RNAs in lymphocytes. Immunol Cell Biol 2005; 83(3):201-210. (Pubitemid 40799547)
    • (2005) Immunology and Cell Biology , vol.83 , Issue.3 , pp. 201-210
    • Chowdhury, D.1    Novina, C.D.2
  • 83
    • 70350647568 scopus 로고    scopus 로고
    • Logic and extent of miRNA-mediated control of autoimmune gene expression
    • Vinuesa CG, Rigby RJ, Yu D. Logic and extent of miRNA-mediated control of autoimmune gene expression. Int Rev Immunol 2009; 28(3-4):112-138.
    • (2009) Int Rev Immunol , vol.28 , Issue.3-4 , pp. 112-138
    • Vinuesa, C.G.1    Rigby, R.J.2    Yu, D.3
  • 84
    • 40649106258 scopus 로고    scopus 로고
    • Non-coding RNAs in imprinted gene clusters
    • DOI 10.1042/BC20070126
    • Royo H, Cavaille J. Noncoding RNAs in imprinted gene clusters. Biol Cell 2008; 100(3):149-166. (Pubitemid 351372674)
    • (2008) Biology of the Cell , vol.100 , Issue.3 , pp. 149-166
    • Royo, H.1    Cavaille, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.