메뉴 건너뛰기




Volumn 343, Issue 6 SPEC. ISS., 2006, Pages 614-629

The Cauchy-Schwarz divergence and Parzen windowing: Connections to graph theory and Mercer kernels

Author keywords

Cauchy Schwarz divergence; Graph cut; Information theory; Mercer kernel theory; Parzen windowing; Spectral methods

Indexed keywords

INFORMATION THEORY; LEARNING SYSTEMS; PARAMETER ESTIMATION; PROBABILITY DENSITY FUNCTION; SPECTRUM ANALYSIS;

EID: 33750503776     PISSN: 00160032     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jfranklin.2006.03.018     Document Type: Article
Times cited : (115)

References (56)
  • 1
    • 0000986833 scopus 로고    scopus 로고
    • Information theoretic learning
    • Haykin S. (Ed), Wiley, New York (Chapter 7)
    • Principe J., Xu D., and Fisher J. Information theoretic learning. In: Haykin S. (Ed). Unsupervised Adaptive Filtering vol. I (2000), Wiley, New York (Chapter 7)
    • (2000) Unsupervised Adaptive Filtering , vol.I
    • Principe, J.1    Xu, D.2    Fisher, J.3
  • 2
    • 84856043672 scopus 로고
    • A mathematical theory of communication
    • 623-653
    • Shannon C.E. A mathematical theory of communication. Bell Syst. Tech. J. 27 (1948) 379-423 623-653
    • (1948) Bell Syst. Tech. J. , vol.27 , pp. 379-423
    • Shannon, C.E.1
  • 3
    • 33750507853 scopus 로고    scopus 로고
    • A. Renyi, On measures of entropy and information, Selected Papers of Alfred Renyi, vol. 2, Akademiai Kiado, Budapest, 1976, pp. 565-580
  • 4
    • 14844340206 scopus 로고    scopus 로고
    • A mutual information extension to the matched filter
    • Erdogmus D., Agrawal R., and Principe J.C. A mutual information extension to the matched filter. Signal Process. 85 5 (2005) 927-935
    • (2005) Signal Process. , vol.85 , Issue.5 , pp. 927-935
    • Erdogmus, D.1    Agrawal, R.2    Principe, J.C.3
  • 6
    • 2442463272 scopus 로고    scopus 로고
    • Minimax mutual information approach for independent component analysis
    • Erdogmus D., Hild K.E., Rao Y.N., and Principe J.C. Minimax mutual information approach for independent component analysis. Neural Comput. 16 (2004) 1235-1252
    • (2004) Neural Comput. , vol.16 , pp. 1235-1252
    • Erdogmus, D.1    Hild, K.E.2    Rao, Y.N.3    Principe, J.C.4
  • 7
    • 0038538359 scopus 로고    scopus 로고
    • Convergence properties and data efficiency of the minimum error-entropy criterion in adaline training
    • Erdogmus D., and Principe J.C. Convergence properties and data efficiency of the minimum error-entropy criterion in adaline training. IEEE Trans. Signal Process. 51 7 (2003) 1966-1978
    • (2003) IEEE Trans. Signal Process. , vol.51 , Issue.7 , pp. 1966-1978
    • Erdogmus, D.1    Principe, J.C.2
  • 8
    • 0036947450 scopus 로고    scopus 로고
    • Blind source separation using Renyi's α-marginal entropies
    • Erdogmus D., Hild K.E., and Principe J.C. Blind source separation using Renyi's α-marginal entropies. Neurocomputing 49 (2002) 25-38
    • (2002) Neurocomputing , vol.49 , pp. 25-38
    • Erdogmus, D.1    Hild, K.E.2    Principe, J.C.3
  • 9
    • 0036571074 scopus 로고    scopus 로고
    • Entropy minimization for supervised digital communications channel equalization
    • Santamaria I., Erdogmus D., and Principe J.C. Entropy minimization for supervised digital communications channel equalization. IEEE Trans. Signal Process. 50 5 (2002) 1184-1192
    • (2002) IEEE Trans. Signal Process. , vol.50 , Issue.5 , pp. 1184-1192
    • Santamaria, I.1    Erdogmus, D.2    Principe, J.C.3
  • 10
    • 0036737108 scopus 로고    scopus 로고
    • Generalized information potential criterion for adaptive system training
    • Erdogmus D., and Principe J.C. Generalized information potential criterion for adaptive system training. IEEE Trans. Neural Networks 13 5 (2002) 1035-1044
    • (2002) IEEE Trans. Neural Networks , vol.13 , Issue.5 , pp. 1035-1044
    • Erdogmus, D.1    Principe, J.C.2
  • 11
    • 0036647905 scopus 로고    scopus 로고
    • An error-entropy minimization algorithm for supervised training of nonlinear adaptive systems
    • Erdogmus D., and Principe J.C. An error-entropy minimization algorithm for supervised training of nonlinear adaptive systems. IEEE Trans. Signal Process. 50 7 (2002) 1780-1786
    • (2002) IEEE Trans. Signal Process. , vol.50 , Issue.7 , pp. 1780-1786
    • Erdogmus, D.1    Principe, J.C.2
  • 12
    • 0034245254 scopus 로고    scopus 로고
    • Learning from examples with information theoretic criteria
    • Principe J.C., Xu D., Zhao Q., and Fisher J.W. Learning from examples with information theoretic criteria. J. VLSI Signal Process. 26 1 (2000) 61-77
    • (2000) J. VLSI Signal Process. , vol.26 , Issue.1 , pp. 61-77
    • Principe, J.C.1    Xu, D.2    Zhao, Q.3    Fisher, J.W.4
  • 13
    • 0001927585 scopus 로고
    • On information and sufficiency
    • Kullback S., and Leibler R.A. On information and sufficiency. Ann. Math. Stat. 22 1 (1951) 79-86
    • (1951) Ann. Math. Stat. , vol.22 , Issue.1 , pp. 79-86
    • Kullback, S.1    Leibler, R.A.2
  • 14
    • 33750514531 scopus 로고    scopus 로고
    • R. Jenssen, An information theoretic approach to machine learning, Ph.D. Thesis, University of Tromsø, Tromsø, Norway, 2005.
  • 15
    • 0003882879 scopus 로고    scopus 로고
    • American Mathematical Society, Providence, RI
    • Chung F.R.K. Spectral Graph Theory (1997), American Mathematical Society, Providence, RI
    • (1997) Spectral Graph Theory
    • Chung, F.R.K.1
  • 16
    • 0027697605 scopus 로고
    • An optimal graph theoretic approach to data clustering: theory and its applications to image segmentation
    • Wu Z., and Leahy R. An optimal graph theoretic approach to data clustering: theory and its applications to image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 15 11 (1993) 1101-1113
    • (1993) IEEE Trans. Pattern Anal. Mach. Intell. , vol.15 , Issue.11 , pp. 1101-1113
    • Wu, Z.1    Leahy, R.2
  • 19
    • 85032751903 scopus 로고    scopus 로고
    • F. Perez-Cruz, O. Bousquet, Kernel methods and their potential use in signal processing, IEEE Signal Processing Magazine, May 2004, pp. 57-65.
  • 21
    • 34249753618 scopus 로고
    • Support vector networks
    • Cortes C., and Vapnik V.N. Support vector networks. Mach. Learn. 20 (1995) 273-297
    • (1995) Mach. Learn. , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.N.2
  • 24
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • Burges C.J.C. A tutorial on support vector machines for pattern recognition. Knowl. Discovery Data Min. 2 2 (1998) 121-167
    • (1998) Knowl. Discovery Data Min. , vol.2 , Issue.2 , pp. 121-167
    • Burges, C.J.C.1
  • 25
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by locally linear embedding
    • Roweis S., and Saul L. Nonlinear dimensionality reduction by locally linear embedding. Science 290 (2000) 2323-2326
    • (2000) Science , vol.290 , pp. 2323-2326
    • Roweis, S.1    Saul, L.2
  • 26
    • 0034704229 scopus 로고    scopus 로고
    • A global geometric framework for nonlinear dimensionality reduction
    • Tenenbaum J., deSilva V., and Langford J.C. A global geometric framework for nonlinear dimensionality reduction. Science 290 (2000) 2319-2323
    • (2000) Science , vol.290 , pp. 2319-2323
    • Tenenbaum, J.1    deSilva, V.2    Langford, J.C.3
  • 27
    • 0042378381 scopus 로고    scopus 로고
    • Laplacian eigenmaps for dimensionality reduction and data representation
    • Belkin M., and Niyogi P. Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput. 15 (2003) 1373-1396
    • (2003) Neural Comput. , vol.15 , pp. 1373-1396
    • Belkin, M.1    Niyogi, P.2
  • 30
    • 0347243182 scopus 로고    scopus 로고
    • Nonlinear component analysis as a kernel eigenvalue problem
    • Schölkopf B., Smola A.J., and Müller K.R. Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput. 10 (1998) 1299-1319
    • (1998) Neural Comput. , vol.10 , pp. 1299-1319
    • Schölkopf, B.1    Smola, A.J.2    Müller, K.R.3
  • 34
    • 0001473437 scopus 로고
    • On the estimation of a probability density function and the mode
    • Parzen E. On the estimation of a probability density function and the mode. Ann. Math. Stat. 32 (1962) 1065-1076
    • (1962) Ann. Math. Stat. , vol.32 , pp. 1065-1076
    • Parzen, E.1
  • 36
    • 0002780488 scopus 로고
    • Comparison of data driven bandwidth selectors
    • Park B., and Marron J.S. Comparison of data driven bandwidth selectors. J. Am. Stat. Assoc. 85 (1990) 66-72
    • (1990) J. Am. Stat. Assoc. , vol.85 , pp. 66-72
    • Park, B.1    Marron, J.S.2
  • 37
    • 0001268552 scopus 로고
    • A reliable data-based bandwidth selection method for kernel density estimation
    • Sheater S.J., and Jones M.C. A reliable data-based bandwidth selection method for kernel density estimation. J. R. Stat. Soc. Ser. B 53 (1991) 683-690
    • (1991) J. R. Stat. Soc. Ser. B , vol.53 , pp. 683-690
    • Sheater, S.J.1    Jones, M.C.2
  • 38
    • 17644394084 scopus 로고    scopus 로고
    • A brief survey of bandwidth selection for density estimation
    • Jones M.C., Marron J.S., and Sheater S.J. A brief survey of bandwidth selection for density estimation. J. R. Stat. Soc. 87 (1996) 227-233
    • (1996) J. R. Stat. Soc. , vol.87 , pp. 227-233
    • Jones, M.C.1    Marron, J.S.2    Sheater, S.J.3
  • 39
    • 0001110699 scopus 로고
    • On bandwidth variation in kernel estimates
    • Abramson I. On bandwidth variation in kernel estimates. Ann. Stat. 10 4 (1982) 1217-1223
    • (1982) Ann. Stat. , vol.10 , Issue.4 , pp. 1217-1223
    • Abramson, I.1
  • 40
    • 21844522785 scopus 로고
    • Improved variable window kernel estimates of probability densities
    • Hall P., Hu T.-C., and Marron J.S. Improved variable window kernel estimates of probability densities. Ann. Stat. 23 (1995) 1-10
    • (1995) Ann. Stat. , vol.23 , pp. 1-10
    • Hall, P.1    Hu, T.-C.2    Marron, J.S.3
  • 41
    • 0000182415 scopus 로고
    • A measure of asymptotic efficiency for tests of a hypothesis based on a sum of observations
    • Chernoff H. A measure of asymptotic efficiency for tests of a hypothesis based on a sum of observations. Ann. Math. Stat. 23 (1952) 493-507
    • (1952) Ann. Math. Stat. , vol.23 , pp. 493-507
    • Chernoff, H.1
  • 45
    • 0035481858 scopus 로고    scopus 로고
    • Self-organization in vision: stochastic clustering for image segmentation, perceptual grouping, and image database organization
    • Gdalyahu Y., Weinshall D., and Werman M. Self-organization in vision: stochastic clustering for image segmentation, perceptual grouping, and image database organization. IEEE Trans. Pattern Anal. Mach. Intell. 23 10 (2001) 1053-1074
    • (2001) IEEE Trans. Pattern Anal. Mach. Intell. , vol.23 , Issue.10 , pp. 1053-1074
    • Gdalyahu, Y.1    Weinshall, D.2    Werman, M.3
  • 47
    • 0001500115 scopus 로고
    • Functions of positive and negative type and their connection with the theory of integral equations
    • Mercer J. Functions of positive and negative type and their connection with the theory of integral equations. Philos. Trans. R. Soc. London Ser. A (1909) 415-446
    • (1909) Philos. Trans. R. Soc. London Ser. A , pp. 415-446
    • Mercer, J.1
  • 48
    • 84956628443 scopus 로고    scopus 로고
    • K.R. Müller, A.J. Smola, G. Rätsch, B. Schölkopf, J. Kohlmorgen, V.N. Vapnik, Predicting time series with support vector machines, in: Proceedings of International Conference on Artificial Neural Networks, Lecture Notes in Computer Science, vol. 1327, Springer, Berlin, 1997, pp. 999-1004.
  • 49
    • 84899010839 scopus 로고    scopus 로고
    • Using the Nyström method to speed up kernel machines
    • MIT Press, Cambridge
    • Williams C., and Seeger M. Using the Nyström method to speed up kernel machines. Advances in Neural Information Processing Systems vol. 13 (2001), MIT Press, Cambridge 682-688
    • (2001) Advances in Neural Information Processing Systems , vol.13 , pp. 682-688
    • Williams, C.1    Seeger, M.2
  • 50
    • 33750523967 scopus 로고    scopus 로고
    • Y. Bengio, P. Vincent, J.-F. Paiement, Spectral clustering and kernel PCA are learning eigenfunctions, Technical Report, Département d'informatique et recherche opérationelle, université de Montréal, Montréal, Canada, 2003.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.