-
1
-
-
0242659142
-
Attributable mortality of nosocomial candidemia, revisited
-
Gudlaugsson O., et al. Attributable mortality of nosocomial candidemia, revisited. Clin. Infect. Dis. 2003, 37:1172-1177.
-
(2003)
Clin. Infect. Dis.
, vol.37
, pp. 1172-1177
-
-
Gudlaugsson, O.1
-
2
-
-
33846466508
-
Epidemiology of invasive candidiasis: a persistent public health problem
-
Pfaller M.A., Diekema D.J. Epidemiology of invasive candidiasis: a persistent public health problem. Clin. Microbiol. Rev. 2007, 20:133-163.
-
(2007)
Clin. Microbiol. Rev.
, vol.20
, pp. 133-163
-
-
Pfaller, M.A.1
Diekema, D.J.2
-
3
-
-
0030115305
-
Emerging disease issues and fungal pathogens associated with HIV infection
-
Ampel N.M. Emerging disease issues and fungal pathogens associated with HIV infection. Emerg. Infect. Dis. 1996, 2:109-116.
-
(1996)
Emerg. Infect. Dis.
, vol.2
, pp. 109-116
-
-
Ampel, N.M.1
-
4
-
-
0002159116
-
Introduction and historical perspectives
-
ASM Press, R.A. Calderone (Ed.)
-
Calderone R.A. Introduction and historical perspectives. Candida and Candidiasis 2002, 3-13. ASM Press. R.A. Calderone (Ed.).
-
(2002)
Candida and Candidiasis
, pp. 3-13
-
-
Calderone, R.A.1
-
5
-
-
84892003890
-
Candida infections: an overview
-
Odds F.C. Candida infections: an overview. Crit. Rev. Microbiol. 1987, 15:1-5.
-
(1987)
Crit. Rev. Microbiol.
, vol.15
, pp. 1-5
-
-
Odds, F.C.1
-
6
-
-
0015815382
-
Natural history of Candida species and yeasts in the oral cavities of infants
-
Russell C., Lay K.M. Natural history of Candida species and yeasts in the oral cavities of infants. Arch. Oral Biol. 1973, 18:957-962.
-
(1973)
Arch. Oral Biol.
, vol.18
, pp. 957-962
-
-
Russell, C.1
Lay, K.M.2
-
7
-
-
40349102094
-
Mucosal damage and neutropenia are required for Candida albicans dissemination
-
Koh A.Y., et al. Mucosal damage and neutropenia are required for Candida albicans dissemination. PLoS Pathog. 2008, 4:e35.
-
(2008)
PLoS Pathog.
, vol.4
-
-
Koh, A.Y.1
-
8
-
-
0034082550
-
Intestinal lesions associated with disseminated candidiasis in an experimental animal model
-
Andrutis K.A., et al. Intestinal lesions associated with disseminated candidiasis in an experimental animal model. J. Clin. Microbiol. 2000, 38:2317-2323.
-
(2000)
J. Clin. Microbiol.
, vol.38
, pp. 2317-2323
-
-
Andrutis, K.A.1
-
9
-
-
77956799388
-
Adaptations of Candida albicans for growth in the mammalian intestinal tract
-
Rosenbach A., et al. Adaptations of Candida albicans for growth in the mammalian intestinal tract. Eukaryot. Cell 2010, 9:1075-1086.
-
(2010)
Eukaryot. Cell
, vol.9
, pp. 1075-1086
-
-
Rosenbach, A.1
-
10
-
-
33947264766
-
In vivo and ex vivo comparative transcriptional profiling of invasive and non-invasive Candida albicans isolates identifies genes associated with tissue invasion
-
Thewes S., et al. In vivo and ex vivo comparative transcriptional profiling of invasive and non-invasive Candida albicans isolates identifies genes associated with tissue invasion. Mol. Microbiol. 2007, 63:1606-1628.
-
(2007)
Mol. Microbiol.
, vol.63
, pp. 1606-1628
-
-
Thewes, S.1
-
11
-
-
35948998096
-
In vivo transcript profiling of Candida albicans identifies a gene essential for interepithelial dissemination
-
Zakikhany K., et al. In vivo transcript profiling of Candida albicans identifies a gene essential for interepithelial dissemination. Cell. Microbiol. 2007, 9:2938-2954.
-
(2007)
Cell. Microbiol.
, vol.9
, pp. 2938-2954
-
-
Zakikhany, K.1
-
12
-
-
37848999745
-
Self-regulation of Candida albicans population size during GI colonization
-
White S.J., et al. Self-regulation of Candida albicans population size during GI colonization. PLoS Pathog. 2007, 3:e184.
-
(2007)
PLoS Pathog.
, vol.3
-
-
White, S.J.1
-
13
-
-
37349076668
-
Functional yet balanced reactivity to Candida albicans requires TRIF, MyD88, and IDO-dependent inhibition of Rorc
-
De Luca A., et al. Functional yet balanced reactivity to Candida albicans requires TRIF, MyD88, and IDO-dependent inhibition of Rorc. J. Immunol. 2007, 179:5999-6008.
-
(2007)
J. Immunol.
, vol.179
, pp. 5999-6008
-
-
De Luca, A.1
-
14
-
-
0023142875
-
'White-opaque transition': a second high-frequency switching system in Candida albicans
-
Slutsky B., et al. 'White-opaque transition': a second high-frequency switching system in Candida albicans. J. Bacteriol. 1987, 169:189-197.
-
(1987)
J. Bacteriol.
, vol.169
, pp. 189-197
-
-
Slutsky, B.1
-
15
-
-
0036812246
-
In Candida albicans, white-opaque switchers are homozygous for mating type
-
Lockhart S.R., et al. In Candida albicans, white-opaque switchers are homozygous for mating type. Genetics 2002, 162:737-745.
-
(2002)
Genetics
, vol.162
, pp. 737-745
-
-
Lockhart, S.R.1
-
16
-
-
0037047354
-
White-opaque switching in Candida albicans is controlled by mating-type locus homeodomain proteins and allows efficient mating
-
Miller M.G., Johnson A.D. White-opaque switching in Candida albicans is controlled by mating-type locus homeodomain proteins and allows efficient mating. Cell 2002, 110:293-302.
-
(2002)
Cell
, vol.110
, pp. 293-302
-
-
Miller, M.G.1
Johnson, A.D.2
-
17
-
-
0034647487
-
Evidence for mating of the 'asexual' yeast Candida albicans in a mammalian host
-
Hull C.M., et al. Evidence for mating of the 'asexual' yeast Candida albicans in a mammalian host. Science 2000, 289:307-310.
-
(2000)
Science
, vol.289
, pp. 307-310
-
-
Hull, C.M.1
-
18
-
-
0034647921
-
Induction of mating in Candida albicans by construction of MTLa and MTLalpha strains
-
Magee B.B., Magee P.T. Induction of mating in Candida albicans by construction of MTLa and MTLalpha strains. Science 2000, 289:310-313.
-
(2000)
Science
, vol.289
, pp. 310-313
-
-
Magee, B.B.1
Magee, P.T.2
-
19
-
-
0037069364
-
Metabolic specialization associated with phenotypic switching in Candida albicans
-
Lan C.Y., et al. Metabolic specialization associated with phenotypic switching in Candida albicans. Proc. Natl. Acad. Sci. U.S.A. 2002, 99:14907-14912.
-
(2002)
Proc. Natl. Acad. Sci. U.S.A.
, vol.99
, pp. 14907-14912
-
-
Lan, C.Y.1
-
20
-
-
70350022245
-
Why does Candida albicans switch?
-
Soll D.R. Why does Candida albicans switch?. FEMS Yeast Res. 2009, 9:973-989.
-
(2009)
FEMS Yeast Res.
, vol.9
, pp. 973-989
-
-
Soll, D.R.1
-
21
-
-
33646780600
-
Opaque cells signal white cells to form biofilms in Candida albicans
-
Daniels K.J., et al. Opaque cells signal white cells to form biofilms in Candida albicans. EMBO J. 2006, 25:2240-2252.
-
(2006)
EMBO J.
, vol.25
, pp. 2240-2252
-
-
Daniels, K.J.1
-
22
-
-
3042521076
-
The distinct morphogenic states of Candida albicans
-
Sudbery P., et al. The distinct morphogenic states of Candida albicans. Trends Microbiol. 2004, 12:317-324.
-
(2004)
Trends Microbiol.
, vol.12
, pp. 317-324
-
-
Sudbery, P.1
-
23
-
-
48249156540
-
The Yak1 kinase is involved in the initiation and maintenance of hyphal growth in Candida albicans
-
Goyard S., et al. The Yak1 kinase is involved in the initiation and maintenance of hyphal growth in Candida albicans. Mol. Biol. Cell 2008, 19:2251-2266.
-
(2008)
Mol. Biol. Cell
, vol.19
, pp. 2251-2266
-
-
Goyard, S.1
-
24
-
-
19644385116
-
Induction of the Candida albicans filamentous growth program by relief of transcriptional repression: a genome-wide analysis
-
Kadosh D., Johnson A.D. Induction of the Candida albicans filamentous growth program by relief of transcriptional repression: a genome-wide analysis. Mol. Biol. Cell 2005, 16:2903-2912.
-
(2005)
Mol. Biol. Cell
, vol.16
, pp. 2903-2912
-
-
Kadosh, D.1
Johnson, A.D.2
-
25
-
-
0036798450
-
Transcription profiling of Candida albicans cells undergoing the yeast-to-hyphal transition
-
Nantel A., et al. Transcription profiling of Candida albicans cells undergoing the yeast-to-hyphal transition. Mol. Biol. Cell 2002, 13:3452-3465.
-
(2002)
Mol. Biol. Cell
, vol.13
, pp. 3452-3465
-
-
Nantel, A.1
-
26
-
-
0022379107
-
High-frequency switching of colony morphology in Candida albicans
-
Slutsky B., et al. High-frequency switching of colony morphology in Candida albicans. Science 1985, 230:666-669.
-
(1985)
Science
, vol.230
, pp. 666-669
-
-
Slutsky, B.1
-
27
-
-
0343199707
-
Phenotypic switching in Candida albicans is controlled by a SIR2 gene
-
Perez-Martin J., et al. Phenotypic switching in Candida albicans is controlled by a SIR2 gene. EMBO J. 1999, 18:2580-2592.
-
(1999)
EMBO J.
, vol.18
, pp. 2580-2592
-
-
Perez-Martin, J.1
-
28
-
-
0033430403
-
Effect of INT1 gene on Candida albicans murine intestinal colonization
-
Kinneberg K.M., et al. Effect of INT1 gene on Candida albicans murine intestinal colonization. J. Surg. Res. 1999, 87:245-251.
-
(1999)
J. Surg. Res.
, vol.87
, pp. 245-251
-
-
Kinneberg, K.M.1
-
29
-
-
72749109443
-
'Nothing is permanent but change' - antigenic variation in persistent bacterial pathogens
-
Palmer G.H., et al. 'Nothing is permanent but change' - antigenic variation in persistent bacterial pathogens. Cell. Microbiol. 2009, 11:1697-1705.
-
(2009)
Cell. Microbiol.
, vol.11
, pp. 1697-1705
-
-
Palmer, G.H.1
-
30
-
-
67649403394
-
Common strategies for antigenic variation by bacterial, fungal and protozoan pathogens
-
Deitsch K.W., et al. Common strategies for antigenic variation by bacterial, fungal and protozoan pathogens. Nat. Rev. Microbiol. 2009, 7:493-503.
-
(2009)
Nat. Rev. Microbiol.
, vol.7
, pp. 493-503
-
-
Deitsch, K.W.1
-
31
-
-
33344465079
-
Within-host dynamics of antigenic variation
-
Frank S.A., Barbour A.G. Within-host dynamics of antigenic variation. Infect. Genet. Evol. 2006, 6:141-146.
-
(2006)
Infect. Genet. Evol.
, vol.6
, pp. 141-146
-
-
Frank, S.A.1
Barbour, A.G.2
-
32
-
-
33845329168
-
Pathogen escape from host immunity by a genome program for antigenic variation
-
Barbour A.G., et al. Pathogen escape from host immunity by a genome program for antigenic variation. Proc. Natl. Acad. Sci. U.S.A. 2006, 103:18290-18295.
-
(2006)
Proc. Natl. Acad. Sci. U.S.A.
, vol.103
, pp. 18290-18295
-
-
Barbour, A.G.1
-
33
-
-
34548309048
-
The role of VlsE antigenic variation in the Lyme disease spirochete: persistence through a mechanism that differs from other pathogens
-
Bankhead T., Chaconas G. The role of VlsE antigenic variation in the Lyme disease spirochete: persistence through a mechanism that differs from other pathogens. Mol. Microbiol. 2007, 65:1547-1558.
-
(2007)
Mol. Microbiol.
, vol.65
, pp. 1547-1558
-
-
Bankhead, T.1
Chaconas, G.2
-
34
-
-
0036176967
-
Pathogenesis of Plasmodium falciparum malaria: the roles of parasite adhesion and antigenic variation
-
Beeson J.G., Brown G.V. Pathogenesis of Plasmodium falciparum malaria: the roles of parasite adhesion and antigenic variation. Cell. Mol. Life Sci. 2002, 59:258-271.
-
(2002)
Cell. Mol. Life Sci.
, vol.59
, pp. 258-271
-
-
Beeson, J.G.1
Brown, G.V.2
-
35
-
-
0023179802
-
Antigenic variation of cloned Plasmodium fragile in its natural host Macaca sinica. Sequential appearance of successive variant antigenic types
-
Handunnetti S.M., et al. Antigenic variation of cloned Plasmodium fragile in its natural host Macaca sinica. Sequential appearance of successive variant antigenic types. J. Exp. Med. 1987, 165:1269-1283.
-
(1987)
J. Exp. Med.
, vol.165
, pp. 1269-1283
-
-
Handunnetti, S.M.1
-
36
-
-
84884676244
-
Antigenic variation in Plasmodium falciparum
-
Scherf A., et al. Antigenic variation in Plasmodium falciparum. Annu. Rev. Microbiol. 2008, 62:445-470.
-
(2008)
Annu. Rev. Microbiol.
, vol.62
, pp. 445-470
-
-
Scherf, A.1
-
37
-
-
44349099316
-
Frequent recombination events generate diversity within the multi-copy variant antigen gene families of Plasmodium falciparum
-
Frank M., et al. Frequent recombination events generate diversity within the multi-copy variant antigen gene families of Plasmodium falciparum. Int. J. Parasitol. 2008, 38:1099-1109.
-
(2008)
Int. J. Parasitol.
, vol.38
, pp. 1099-1109
-
-
Frank, M.1
-
38
-
-
50049132233
-
Self-destructive cooperation mediated by phenotypic noise
-
Ackermann M., et al. Self-destructive cooperation mediated by phenotypic noise. Nature 2008, 454:987-990.
-
(2008)
Nature
, vol.454
, pp. 987-990
-
-
Ackermann, M.1
-
39
-
-
35649026345
-
Salmonella enterica serovar Typhimurium exploits inflammation to compete with the intestinal microbiota
-
Stecher B., et al. Salmonella enterica serovar Typhimurium exploits inflammation to compete with the intestinal microbiota. PLoS Biol. 2007, 5:2177-2189.
-
(2007)
PLoS Biol.
, vol.5
, pp. 2177-2189
-
-
Stecher, B.1
-
40
-
-
33846796149
-
Microbial phenotypic heterogeneity and antibiotic tolerance
-
Dhar N., McKinney J.D. Microbial phenotypic heterogeneity and antibiotic tolerance. Curr. Opin. Microbiol. 2007, 10:30-38.
-
(2007)
Curr. Opin. Microbiol.
, vol.10
, pp. 30-38
-
-
Dhar, N.1
McKinney, J.D.2
-
41
-
-
77955628762
-
Persister cells
-
Lewis K. Persister cells. Annu. Rev. Microbiol. 2010, 64:357-372.
-
(2010)
Annu. Rev. Microbiol.
, vol.64
, pp. 357-372
-
-
Lewis, K.1
-
42
-
-
0037030671
-
Host-induced epidemic spread of the cholera bacterium
-
Merrell D.S., et al. Host-induced epidemic spread of the cholera bacterium. Nature 2002, 417:642-645.
-
(2002)
Nature
, vol.417
, pp. 642-645
-
-
Merrell, D.S.1
-
43
-
-
78049502058
-
Antibodies and immune effectors: shaping Gram-negative bacterial phenotypes
-
Wade W.F., O'Toole G.A. Antibodies and immune effectors: shaping Gram-negative bacterial phenotypes. Trends Microbiol. 2010, 18:234-239.
-
(2010)
Trends Microbiol.
, vol.18
, pp. 234-239
-
-
Wade, W.F.1
O'Toole, G.A.2
|