메뉴 건너뛰기




Volumn 8, Issue 4, 2011, Pages 1067-1079

Predicting MHC-II binding affinity using multiple instance regression

Author keywords

MHC II peptide prediction; multiple instance learning; multiple instance regression.

Indexed keywords

AMINO ACID SEQUENCE; ANTIGEN PEPTIDE; BENCHMARK DATA; BINDING AFFINITIES; BINDING PEPTIDE; CORE REGION; IMMUNE RESPONSE; MAJOR HISTOCOMPATIBILITY COMPLEX CLASS; MHC-II BINDING AFFINITY; MULTIPLE INSTANCE LEARNING; MULTIPLE INSTANCE REGRESSION.; MULTIPLE INSTANCES; NOVEL METHODS; PEPTIDE PREDICTION; REGRESSION PROBLEM; STATE-OF-THE-ART METHODS; WEB SERVERS;

EID: 79957588907     PISSN: 15455963     EISSN: None     Source Type: Journal    
DOI: 10.1109/TCBB.2010.94     Document Type: Article
Times cited : (22)

References (64)
  • 3
    • 38649118833 scopus 로고    scopus 로고
    • In silico tools for predicting peptides binding to HLA-class II molecules: More confusion than conclusion
    • DOI 10.1021/pr070527b
    • U. Gowthaman and J. Agrewala, "In Silico Tools for Predicting Peptides Binding to HLA-Class II Molecules: More Confusion than Conclusion," J. Proteome Research, vol. 7, no. 1, pp. 154-63, 2008. (Pubitemid 351171127)
    • (2008) Journal of Proteome Research , vol.7 , Issue.1 , pp. 154-163
    • Gowthaman, U.1    Agrewala, J.N.2
  • 4
    • 0028985984 scopus 로고
    • MHC ligands and peptide motifs: First listing
    • H. Rammensee, T. Friede, and S. Stevanović, "MHC Ligands and Peptide Motifs: First Listing," Immunogenetics, vol. 41, no. 4, pp. 178-228, 1995.
    • (1995) Immunogenetics , vol.41 , Issue.4 , pp. 178-228
    • Rammensee, H.1    Friede, T.2    Stevanović, S.3
  • 5
    • 0028943275 scopus 로고
    • The three-dimensional structure of Peptide-MHC complexes
    • D. Madden, "The Three-Dimensional Structure of Peptide-MHC Complexes," Ann. Rev. Immunology, vol. 13, pp. 587-622, 1995.
    • (1995) Ann. Rev. Immunology , vol.13 , pp. 587-622
    • Madden, D.1
  • 6
    • 0344360732 scopus 로고    scopus 로고
    • Towards the in silico identification of class II restricted T-cell epitopes: A partial least squares iterative self-consistent algorithm for affinity prediction
    • DOI 10.1093/bioinformatics/btg312
    • I. Doytchinova and D. Flower, "Towards the in Silico Identification of Class II Restricted T-Cell Epitopes: A Partial Least Squares Iterative Self-Consistent Algorithm for Affinity Prediction," Bioinformatics vol. 19, no. 17, pp. 2263-2270, 2003. (Pubitemid 37492833)
    • (2003) Bioinformatics , vol.19 , Issue.17 , pp. 2263-2270
    • Doytchinova, I.A.1    Flower, D.R.2
  • 8
    • 33746352651 scopus 로고    scopus 로고
    • Quantitative prediction of mouse class I MHC peptide binding affinity using Support Vector Machine Regression (SVR) models
    • article no. 182
    • W. Liu, X. Meng, Q. Xu, D. Flower, and T. Li, "Quantitative Prediction of Mouse Class I MHC Peptide Binding Affinity Using Support Vector Machine Regression (SVR) Models," BMC Bioinformatics, vol. 7, no. 1, article no. 182, 2006.
    • (2006) BMC Bioinformatics , vol.7 , Issue.1
    • Liu, W.1    Meng, X.2    Xu, Q.3    Flower, D.4    Li, T.5
  • 10
    • 34547778364 scopus 로고    scopus 로고
    • Prediction of MHC class II binding affinity using SMM-Align, a novel stabilization matrix alignment method
    • article no. 238
    • M. Nielsen, C. Lundegaard, and O. Lund, "Prediction of MHC Class II Binding Affinity Using SMM-Align, a Novel Stabilization Matrix Alignment Method," BMC Bioinformatics, vol. 8, article no. 238, 2007.
    • (2007) BMC Bioinformatics , vol.8
    • Nielsen, M.1    Lundegaard, C.2    Lund, O.3
  • 11
    • 5444249860 scopus 로고    scopus 로고
    • Enhancement to the RANKPEP resource for the prediction of peptide binding to MHC molecules using profiles
    • DOI 10.1007/s00251-004-0709-7
    • P. Reche, J. Glutting, H. Zhang, and E. Reinherz, "Enhancement to the RANKPEP Resource for the Prediction of Peptide Binding to MHC Molecules Using Profiles," Immunogenetics, vol. 56, no. 6, pp. 405-419, 2004. (Pubitemid 39359226)
    • (2004) Immunogenetics , vol.56 , Issue.6 , pp. 405-419
    • Reche, P.A.1    Glutting, J.-P.2    Zhang, H.3    Reinherz, E.L.4
  • 12
    • 0036137241 scopus 로고    scopus 로고
    • ProPred: Prediction of HLA-DR binding sites
    • H. Singh and G. Raghava, "ProPred: Prediction of HLA-DR Binding Sites," Bioinformatics, vol. 17, no. 12, pp. 1236-1237, 2001. (Pubitemid 33735355)
    • (2001) Bioinformatics , vol.17 , Issue.12 , pp. 1236-1237
    • Singh, H.1    Raghava, G.P.S.2
  • 13
    • 2442499729 scopus 로고    scopus 로고
    • Improved prediction of MHC class I and class II epitopes using a novel Gibbs sampling approach
    • DOI 10.1093/bioinformatics/bth100
    • M. Nielsen, C. Lundegaard, P. Worning, C. Sylvester-Hvid, K. Lamberth, S. Buus, S. Brunak, and O. Lund, "Improved Prediction of MHC Class I and II Epitopes Using a Novel Gibbs Sampling Approach," Bioinformatics, vol. 20, pp. 1388-1397, 2004. (Pubitemid 38937025)
    • (2004) Bioinformatics , vol.20 , Issue.9 , pp. 1388-1397
    • Nielsen, M.1    Lundegaard, C.2    Worning, P.3    Sylvester Hvid, C.4    Lamberth, K.5    Buus, S.6    Brunak, S.7    Lund, O.8
  • 14
    • 38549105061 scopus 로고    scopus 로고
    • Predicting peptides binding to MHC class II molecules using multi- objective evolutionary algorithms
    • article no. 459
    • M. Rajapakse, B. Schmidt, L. Feng, and V. Brusic, "Predicting Peptides Binding to MHC Class II Molecules Using Multi- Objective Evolutionary Algorithms," BMC Bioinformatics, vol. 8, no. 1, article no. 459, 2007.
    • (2007) BMC Bioinformatics , vol.8 , Issue.1
    • Rajapakse, M.1    Schmidt, B.2    Feng, L.3    Brusic, V.4
  • 15
    • 0032387825 scopus 로고    scopus 로고
    • Predicting peptides that bind to MHC molecules using supervised learning of hidden Markov models
    • DOI 10.1002/(SICI)1097-0134(19981201)33:4<460::AID-PROT2>3.0.CO;2-M
    • H. Mamitsuka, "Predicting Peptides that Bind to MHC Molecules Using Supervised Learning of Hidden Markov Models," PROTEINS: Structure, Function, and Genetics, vol. 33, pp. 460-474, 1998. (Pubitemid 28565732)
    • (1998) Proteins: Structure, Function and Genetics , vol.33 , Issue.4 , pp. 460-474
    • Mamitsuka, H.1
  • 16
    • 0036399733 scopus 로고    scopus 로고
    • Hidden Markov model-based prediction of antigenic peptides that interact with MHC class II molecules
    • DOI 10.1016/S1389-1723(02)80160-8
    • H. Noguchi, R. Kato, T. Hanai, Y. Matsubara, H. Honda, V. Brusic, and T. Kobayashi, "Hidden Markov Model-Based Prediction of Antigenic Peptides that Interact with MHC Class II Molecules," J. Bioscience and Bioeng., vol. 94, no. 3, pp. 264-270, 2002. (Pubitemid 35192075)
    • (2002) Journal of Bioscience and Bioengineering , vol.94 , Issue.3 , pp. 264-270
    • Noguchi, H.1    Kato, R.2    Hanai, T.3    Matsubara, Y.4    Honda, H.5    Brusic, V.6    Kobayashi, T.7
  • 17
    • 0037407113 scopus 로고    scopus 로고
    • Reliable prediction of T-cell epitopes using neural networks with novel sequence representations
    • DOI 10.1110/ps.0239403
    • M. Nielsen, C. Lundegaard, P. Worning, S. Lauemøller, K. Lamberth, S. Buus, S. Brunak, and O. Lund, "Reliable Prediction of T-Cell Epitopes Using Neural Networks with Novel Sequence Representations," Protein Science, vol. 12, pp. 1007-1017, 2003. (Pubitemid 36505435)
    • (2003) Protein Science , vol.12 , Issue.5 , pp. 1007-1017
    • Nielsen, M.1    Lundegaard, C.2    Worning, P.3    Lauemoller, S.L.4    Lamberth, K.5    Buus, S.6    Brunak, S.7    Lund, O.8
  • 18
    • 10744222046 scopus 로고    scopus 로고
    • Sensitive quantitative predictions of peptide-MHC binding by a 'Query by Committee' artificial neural network approach
    • DOI 10.1034/j.1399-0039.2003.00112.x
    • S. Buus, S. Lauemoller, P. Worning, C. Kesmir, T. Frimurer, S. Corbet, A. Fomsgaard, J. Hilden, A. Holm, and S. Brunak, "Sensitive Quantitative Predictions of Peptide-MHC Binding by a'Query by Committee' Artificial Neural Network Approach," Tissue Antigens, vol. 62, no. 5, pp. 378-384, 2003. (Pubitemid 37345160)
    • (2003) Tissue Antigens , vol.62 , Issue.5 , pp. 378-384
    • Buus, S.1    Lauemoller, S.L.2    Worning, P.3    Kesmir, C.4    Frimurer, T.5    Corbet, S.6    Fomsgaard, A.7    Hilden, J.8    Holm, A.9    Brunak, S.10
  • 19
    • 33747839161 scopus 로고    scopus 로고
    • SVMHC: A server for prediction of MHC-binding peptides
    • DOI 10.1093/nar/gkl284
    • P. Donnes and O. Kohlbacher, "SVMHC: A Server for Prediction of MHC-Binding Peptides," Nucleic Acids Research, vol. 34, no. Web Server issue, pp. W194-W197, 2006. (Pubitemid 44529763)
    • (2006) Nucleic Acids Research , vol.34 , Issue.WEB. SERV. ISS.
    • Donnes, P.1    Kohlbacher, O.2
  • 20
    • 1342288007 scopus 로고    scopus 로고
    • SVM based method for predicting HLA-DRB1 0401 binding peptides in an antigen sequence
    • DOI 10.1093/bioinformatics/btg424
    • M. Bhasin and G. Raghava, "SVM Based Method for Predicting HLA-DRB1 0401 Binding Peptides in an Antigen Sequence," Bioinformatics, vol. 20, pp. 421-423, 2004. (Pubitemid 38262776)
    • (2004) Bioinformatics , vol.20 , Issue.3 , pp. 421-423
    • Bhasin, M.1    Raghava, G.P.S.2
  • 21
    • 33748792816 scopus 로고    scopus 로고
    • Prediction of MHC-Binding peptides of flexible lengths from sequence-derived structural and physicochemical properties
    • J. Cui, L. Han, H. Lin, H. Zhang, Z. Tang, C. Zheng, Z. Cao, and Y. Chen, "Prediction of MHC-Binding Peptides of Flexible Lengths from Sequence-Derived Structural and Physicochemical Properties," Molecular Immunology, vol. 44, pp. 866-877, 2006.
    • (2006) Molecular Immunology , vol.44 , pp. 866-877
    • Cui, J.1    Han, L.2    Lin, H.3    Zhang, H.4    Tang, Z.5    Zheng, C.6    Cao, Z.7    Chen, Y.8
  • 22
    • 33845240573 scopus 로고    scopus 로고
    • Predicting class II MHC-Peptide binding: A kernel based approach using similarity scores
    • article no. 501
    • J. Salomon and D. Flower, "Predicting Class II MHC-Peptide Binding: A Kernel Based Approach Using Similarity Scores," BMC Bioinformatics, vol. 7, no. 1, article no. 501, 2006.
    • (2006) BMC Bioinformatics , vol.7 , Issue.1
    • Salomon, J.1    Flower, D.2
  • 23
    • 33750990098 scopus 로고    scopus 로고
    • Prediction of MHC class II binding peptides based on an iterative learning model
    • N. Murugan and Y. Dai, "Prediction of MHC Class II Binding Peptides Based on an Iterative Learning Model," Immunome Research, vol. 1, no. 1, p. 6, 2005.
    • (2005) Immunome Research , vol.1 , Issue.1 , pp. 6
    • Murugan, N.1    Dai, Y.2
  • 24
    • 33947372576 scopus 로고    scopus 로고
    • PepDist: A new framework for protein-peptide binding prediction based on learning peptide distance functions
    • T. Hertz and C. Yanover, "PepDist: A New Framework for Protein-Peptide Binding Prediction Based on Learning Peptide Distance Functions," BMC Bioinformatics, vol. 7, pp. S1-S3, 2006.
    • (2006) BMC Bioinformatics , vol.7
    • Hertz, T.1    Yanover, C.2
  • 25
    • 0002759539 scopus 로고
    • Unsupervised learning of multiple motifs in biopolymers using expectation maximization
    • T. Bailey and C. Elkan, "Unsupervised Learning of Multiple Motifs in Biopolymers Using Expectation Maximization," Machine Learning, vol. 21, no. 1, pp. 51-80, 1995.
    • (1995) Machine Learning , vol.21 , Issue.1 , pp. 51-80
    • Bailey, T.1    Elkan, C.2
  • 26
    • 0027912333 scopus 로고
    • Detecting subtle sequence signals: A gibbs sampling strategy for multiple alignment
    • C. Lawrence, S. Altschul, M. Boguski, J. Liu, A. Neuwald, and J. Wootton, "Detecting Subtle Sequence Signals: A Gibbs Sampling Strategy for Multiple Alignment," Science, vol. 262, no. 5131, pp. 208-214, 1993.
    • (1993) Science , vol.262 , Issue.5131 , pp. 208-214
    • Lawrence, C.1    Altschul, S.2    Boguski, M.3    Liu, J.4    Neuwald, A.5    Wootton, J.6
  • 27
    • 0001953837 scopus 로고
    • Genetic algorithms for multiobjective optimization: Formulation, discussion and generalization
    • C. Fonseca and P. Fleming, "Genetic Algorithms for Multiobjective Optimization: Formulation, Discussion and Generalization," Proc. Fifth Int'l Conf. Genetic Algorithms, vol. 423, pp. 416- 423, 1993.
    • (1993) Proc. Fifth Int'l Conf. Genetic Algorithms , vol.423 , pp. 416-423
    • Fonseca, C.1    Fleming, P.2
  • 29
    • 0026860799 scopus 로고
    • Robust linear programming discrimination of two linearly inseparable sets
    • K. Bennett and O. Mangasarian, "Robust Linear Programming Discrimination of Two Linearly Inseparable Sets," Optimization Methods and Software, vol. 1, no. 1, pp. 23-34, 1992. (Pubitemid 23615796)
    • (1992) Optimization Methods and Software , vol.1 , Issue.1 , pp. 23-34
    • Bennett Kristin, P.1    Mangasarian, O.L.2
  • 30
    • 33751020273 scopus 로고    scopus 로고
    • Peptide length-based prediction of peptide - MHC class II binding
    • DOI 10.1093/bioinformatics/btl479
    • S. Chang, D. Ghosh, D. Kirschner, and J. Linderman, "Peptide Length-Based Prediction of Peptide-MHC Class II Binding," Bioinformatics, vol. 22, no. 22, pp. 2761-2767, 2006. (Pubitemid 44742396)
    • (2006) Bioinformatics , vol.22 , Issue.22 , pp. 2761-2767
    • Chang, S.T.1    Ghosh, D.2    Kirschner, D.E.3    Linderman, J.J.4
  • 31
    • 70449359806 scopus 로고    scopus 로고
    • NN-Align. An artificial neural network-based alignment algorithm for MHC class II peptide binding prediction
    • article no. 296
    • M. Nielsen and O. Lund, "NN-Align. An Artificial Neural Network-Based Alignment Algorithm for MHC Class II Peptide Binding Prediction," BMC Bioinformatics, vol. 10, no. 1, article no. 296, 2009.
    • (2009) BMC Bioinformatics , vol.10 , Issue.1
    • Nielsen, M.1    Lund, O.2
  • 33
    • 0030649484 scopus 로고    scopus 로고
    • Solving the multiple instance problem with axis-parallel rectangles
    • PII S0004370296000343
    • R.H. Dietterich, T.G. Lathrop, and T. Lozano-Perez, "Solving the Multiple-Instance Problem with Axis Parallel Rectangles," Artificial Intelligence, vol. 89, nos. 1/2, pp. 31-71, 1997. (Pubitemid 127412230)
    • (1997) Artificial Intelligence , vol.89 , Issue.1-2 , pp. 31-71
    • Dietterich, T.G.1    Lathrop, R.H.2    Lozano-Perez, T.3
  • 35
    • 0141596676 scopus 로고    scopus 로고
    • Solving the multiple-instance problem: A lazy learning approach
    • J. Wang and J.D. Zucker, "Solving the Multiple-Instance Problem: A Lazy Learning Approach," Proc. 17th Int'l Conf. Machine Learning, pp. 1119-1125, 2000.
    • (2000) Proc. 17th Int'l Conf. Machine Learning , pp. 1119-1125
    • Wang, J.1    Zucker, J.D.2
  • 40
  • 43
    • 0002288190 scopus 로고    scopus 로고
    • Multiple-Instance learning for natural scene classification
    • O. Maron and A. Ratan, "Multiple-Instance Learning for Natural Scene Classification," Proc. 15th Int'l Conf. Machine Learning, pp. 341-349, 1998.
    • (1998) Proc. 15th Int'l Conf. Machine Learning , pp. 341-349
    • Maron, O.1    Ratan, A.2
  • 45
    • 15544389390 scopus 로고    scopus 로고
    • Multi-instance learning based web mining
    • DOI 10.1007/s10489-005-5602-z
    • Z. Zhou, K. Jiang, and M. Li, "Multi-Instance Learning Based Web Mining," Applied Intelligence, vol. 22, no. 2, pp. 135-147, 2005. (Pubitemid 40400730)
    • (2005) Applied Intelligence , vol.22 , Issue.2 , pp. 135-147
    • Zhou, Z.-H.1    Jiang, K.2    Li, M.3
  • 48
    • 0037491973 scopus 로고    scopus 로고
    • Multiple-Instance learning of real- valued geometric patterns
    • S. Goldman and S. Scott, "Multiple-Instance Learning of Real- Valued Geometric Patterns," Annals of Math. and Artificial Intelligence, vol. 39, no. 3, pp. 259-290, 2003.
    • (2003) Annals of Math. and Artificial Intelligence , vol.39 , Issue.3 , pp. 259-290
    • Goldman, S.1    Scott, S.2
  • 49
    • 42949139524 scopus 로고    scopus 로고
    • A systematic assessment of MHC class II peptide binding predictions and evaluation of a consensus approach
    • P. Wang, J. Sidney, C. Dow, B. Mothé, A. Sette, and B. Peters, "A Systematic Assessment of MHC Class II Peptide Binding Predictions and Evaluation of a Consensus Approach," PLoS Computational Biology, vol. 4, no. 4, 2008.
    • (2008) PLoS Computational Biology , vol.4 , Issue.4
    • Wang, P.1    Sidney, J.2    Dow, C.3    Mothé, B.4    Sette, A.5    Peters, B.6
  • 50
    • 57649174707 scopus 로고    scopus 로고
    • Evaluation of MHC-II peptide binding prediction servers: Applications for vaccine research
    • article no. S22
    • H. Lin, G. Zhang, S. Tongchusak, E. Reinherz, and V. Brusic, "Evaluation of MHC-II Peptide Binding Prediction Servers: Applications for Vaccine Research," BMC Bioinformatics, vol. 9, article no. S22, 2008.
    • (2008) BMC Bioinformatics , vol.9
    • Lin, H.1    Zhang, G.2    Tongchusak, S.3    Reinherz, E.4    Brusic, V.5
  • 55
    • 0026458378 scopus 로고
    • Amino acid substitution matrices from protein blocks
    • S. Henikoff and J. Henikoff, "Amino Acid Substitution Matrices from Protein Blocks," Proc. Nat'l Academy of Sciences USA, vol. 89, no. 22, pp. 10915-10919, 1992.
    • (1992) Proc. Nat'l Academy of Sciences USA , vol.89 , Issue.22 , pp. 10915-10919
    • Henikoff, S.1    Henikoff, J.2
  • 56
    • 0023890867 scopus 로고
    • Measuring the accuracy of diagnostic systems
    • J. Swets, "Measuring the Accuracy of Diagnostic Systems," Science, vol. 240, no. 4857, pp. 1285-1293, 1988.
    • (1988) Science , vol.240 , Issue.4857 , pp. 1285-1293
    • Swets, J.1
  • 58
    • 20944447214 scopus 로고    scopus 로고
    • The immune epitope database and analysis resource: From vision to blueprint
    • B. Peters et al., "The Immune Epitope Database and Analysis Resource: From Vision to Blueprint," PLoS Biology, vol. 3, no. 3, pp. 379-381, 2005.
    • (2005) PLoS Biology , vol.3 , Issue.3 , pp. 379-381
    • Peters, B.1
  • 60
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • J. Demšar, "Statistical Comparisons of Classifiers over Multiple Data Sets," J. Machine Learning Research, vol. 7, pp. 1-30, 2006. (Pubitemid 43022939)
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 1-30
    • Demsar, J.1
  • 61
    • 0031825709 scopus 로고    scopus 로고
    • Prediction of MHC class II-binding peptides using an evolutionary algorithm and artificial neural network
    • V. Brusic, G. Rudy, G. Honeyman, J. Hammer, and L. Harrison, "Prediction of MHC Class II-Binding Peptides Using an Evolutionary Algorithm and Artificial Neural Network," Bioinformatics, vol. 14, no. 2, pp. 121-130, 1998. (Pubitemid 28395870)
    • (1998) Bioinformatics , vol.14 , Issue.2 , pp. 121-130
    • Brusic, V.1    Rudy, G.2    Honeyman, M.3    Hammer, J.4    Harrison, L.5
  • 62
    • 34547994564 scopus 로고    scopus 로고
    • Multiple instance classification via successive linear programming
    • Data Mining Inst.
    • O. Mangasarian and E. Wild, "Multiple Instance Classification via Successive Linear Programming," Technical Report 05-02, Data Mining Inst., 2005.
    • (2005) Technical Report 05-02
    • Mangasarian, O.1    Wild, E.2
  • 63
    • 33947396751 scopus 로고    scopus 로고
    • Solving multi-instance problems with classifier ensemble based on constructive clustering
    • Z. Zhou and M. Zhang, "Solving Multi-Instance Problems with Classifier Ensemble Based on Constructive Clustering," Knowledge and Information Systems, vol. 11, no. 2, pp. 155-170, 2007.
    • (2007) Knowledge and Information Systems , vol.11 , Issue.2 , pp. 155-170
    • Zhou, Z.1    Zhang, M.2
  • 64
    • 9444267142 scopus 로고    scopus 로고
    • A two-level learning method for generalized multi-instance problems
    • Machine Learning: ECML 2003
    • N. Weidmann, E. Frank, and B. Pfahringer, "A Two-Level Learning Method for Generalized Multi-Instance Problems," Proc. European Conf. Machine Learning, pp. 468-479, 2003. (Pubitemid 37231000)
    • (2003) Proc. European Conf. Machine Learning , Issue.2837 , pp. 468-479
    • Weidmann, N.1    Frank, E.2    Pfahringer, B.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.