-
2
-
-
33745608737
-
Immunoinformatics comes of age
-
B. Korber, M. LaBute, and K. Yusim, "Immunoinformatics Comes of Age," PLoS Computational Biology, vol. 2, no. 6, pp. 484-492, 2006.
-
(2006)
PLoS Computational Biology
, vol.2
, Issue.6
, pp. 484-492
-
-
Korber, B.1
Labute, M.2
Yusim, K.3
-
3
-
-
38649118833
-
In silico tools for predicting peptides binding to HLA-class II molecules: More confusion than conclusion
-
DOI 10.1021/pr070527b
-
U. Gowthaman and J. Agrewala, "In Silico Tools for Predicting Peptides Binding to HLA-Class II Molecules: More Confusion than Conclusion," J. Proteome Research, vol. 7, no. 1, pp. 154-63, 2008. (Pubitemid 351171127)
-
(2008)
Journal of Proteome Research
, vol.7
, Issue.1
, pp. 154-163
-
-
Gowthaman, U.1
Agrewala, J.N.2
-
4
-
-
0028985984
-
MHC ligands and peptide motifs: First listing
-
H. Rammensee, T. Friede, and S. Stevanović, "MHC Ligands and Peptide Motifs: First Listing," Immunogenetics, vol. 41, no. 4, pp. 178-228, 1995.
-
(1995)
Immunogenetics
, vol.41
, Issue.4
, pp. 178-228
-
-
Rammensee, H.1
Friede, T.2
Stevanović, S.3
-
5
-
-
0028943275
-
The three-dimensional structure of Peptide-MHC complexes
-
D. Madden, "The Three-Dimensional Structure of Peptide-MHC Complexes," Ann. Rev. Immunology, vol. 13, pp. 587-622, 1995.
-
(1995)
Ann. Rev. Immunology
, vol.13
, pp. 587-622
-
-
Madden, D.1
-
6
-
-
0344360732
-
Towards the in silico identification of class II restricted T-cell epitopes: A partial least squares iterative self-consistent algorithm for affinity prediction
-
DOI 10.1093/bioinformatics/btg312
-
I. Doytchinova and D. Flower, "Towards the in Silico Identification of Class II Restricted T-Cell Epitopes: A Partial Least Squares Iterative Self-Consistent Algorithm for Affinity Prediction," Bioinformatics vol. 19, no. 17, pp. 2263-2270, 2003. (Pubitemid 37492833)
-
(2003)
Bioinformatics
, vol.19
, Issue.17
, pp. 2263-2270
-
-
Doytchinova, I.A.1
Flower, D.R.2
-
7
-
-
0242391296
-
Quantitative online prediction of peptide binding to the major histocompatibility complex
-
DOI 10.1016/S1093-3263(03)00160-8
-
C. Hattotuwagama, P. Guan, I. Doytchinova, C. Zygouri, and D. Flower, "Quantitative Online Prediction of Peptide Binding to the Major Histocompatibility Complex," J. Molecular Graphics and Modelling, vol. 22, no. 3, pp. 195-207, 2004. (Pubitemid 37415184)
-
(2004)
Journal of Molecular Graphics and Modelling
, vol.22
, Issue.3
, pp. 195-207
-
-
Hattotuwagama, C.K.1
Guan, P.2
Doytchinova, I.A.3
Zygouri, C.4
Flower, D.R.5
-
8
-
-
33746352651
-
Quantitative prediction of mouse class I MHC peptide binding affinity using Support Vector Machine Regression (SVR) models
-
article no. 182
-
W. Liu, X. Meng, Q. Xu, D. Flower, and T. Li, "Quantitative Prediction of Mouse Class I MHC Peptide Binding Affinity Using Support Vector Machine Regression (SVR) Models," BMC Bioinformatics, vol. 7, no. 1, article no. 182, 2006.
-
(2006)
BMC Bioinformatics
, vol.7
, Issue.1
-
-
Liu, W.1
Meng, X.2
Xu, Q.3
Flower, D.4
Li, T.5
-
9
-
-
21344466799
-
Automated generation and evaluation of specific MHC binding predictive tools: ARB matrix applications
-
DOI 10.1007/s00251-005-0798-y
-
H. Bui, J. Sidney, B. Peters, M. Sathiamurthy, A. Sinichi, K. Purton, B. Mothé, F. Chisari, D. Watkins, and A. Sette, "Automated Generation and Evaluation of Specific MHC Binding Predictive Tools: ARB Matrix Applications," Immunogenetics, vol. 57, no. 5, pp. 304-314, 2005. (Pubitemid 40905049)
-
(2005)
Immunogenetics
, vol.57
, Issue.5
, pp. 304-314
-
-
Bui, H.-H.1
Sidney, J.2
Peters, B.3
Sathiamurthy, M.4
Sinichi, A.5
Purton, K.-A.6
Mothe, B.R.7
Chisari, F.V.8
Watkins, D.I.9
Sette, A.10
-
10
-
-
34547778364
-
Prediction of MHC class II binding affinity using SMM-Align, a novel stabilization matrix alignment method
-
article no. 238
-
M. Nielsen, C. Lundegaard, and O. Lund, "Prediction of MHC Class II Binding Affinity Using SMM-Align, a Novel Stabilization Matrix Alignment Method," BMC Bioinformatics, vol. 8, article no. 238, 2007.
-
(2007)
BMC Bioinformatics
, vol.8
-
-
Nielsen, M.1
Lundegaard, C.2
Lund, O.3
-
11
-
-
5444249860
-
Enhancement to the RANKPEP resource for the prediction of peptide binding to MHC molecules using profiles
-
DOI 10.1007/s00251-004-0709-7
-
P. Reche, J. Glutting, H. Zhang, and E. Reinherz, "Enhancement to the RANKPEP Resource for the Prediction of Peptide Binding to MHC Molecules Using Profiles," Immunogenetics, vol. 56, no. 6, pp. 405-419, 2004. (Pubitemid 39359226)
-
(2004)
Immunogenetics
, vol.56
, Issue.6
, pp. 405-419
-
-
Reche, P.A.1
Glutting, J.-P.2
Zhang, H.3
Reinherz, E.L.4
-
12
-
-
0036137241
-
ProPred: Prediction of HLA-DR binding sites
-
H. Singh and G. Raghava, "ProPred: Prediction of HLA-DR Binding Sites," Bioinformatics, vol. 17, no. 12, pp. 1236-1237, 2001. (Pubitemid 33735355)
-
(2001)
Bioinformatics
, vol.17
, Issue.12
, pp. 1236-1237
-
-
Singh, H.1
Raghava, G.P.S.2
-
13
-
-
2442499729
-
Improved prediction of MHC class I and class II epitopes using a novel Gibbs sampling approach
-
DOI 10.1093/bioinformatics/bth100
-
M. Nielsen, C. Lundegaard, P. Worning, C. Sylvester-Hvid, K. Lamberth, S. Buus, S. Brunak, and O. Lund, "Improved Prediction of MHC Class I and II Epitopes Using a Novel Gibbs Sampling Approach," Bioinformatics, vol. 20, pp. 1388-1397, 2004. (Pubitemid 38937025)
-
(2004)
Bioinformatics
, vol.20
, Issue.9
, pp. 1388-1397
-
-
Nielsen, M.1
Lundegaard, C.2
Worning, P.3
Sylvester Hvid, C.4
Lamberth, K.5
Buus, S.6
Brunak, S.7
Lund, O.8
-
14
-
-
38549105061
-
Predicting peptides binding to MHC class II molecules using multi- objective evolutionary algorithms
-
article no. 459
-
M. Rajapakse, B. Schmidt, L. Feng, and V. Brusic, "Predicting Peptides Binding to MHC Class II Molecules Using Multi- Objective Evolutionary Algorithms," BMC Bioinformatics, vol. 8, no. 1, article no. 459, 2007.
-
(2007)
BMC Bioinformatics
, vol.8
, Issue.1
-
-
Rajapakse, M.1
Schmidt, B.2
Feng, L.3
Brusic, V.4
-
15
-
-
0032387825
-
Predicting peptides that bind to MHC molecules using supervised learning of hidden Markov models
-
DOI 10.1002/(SICI)1097-0134(19981201)33:4<460::AID-PROT2>3.0.CO;2-M
-
H. Mamitsuka, "Predicting Peptides that Bind to MHC Molecules Using Supervised Learning of Hidden Markov Models," PROTEINS: Structure, Function, and Genetics, vol. 33, pp. 460-474, 1998. (Pubitemid 28565732)
-
(1998)
Proteins: Structure, Function and Genetics
, vol.33
, Issue.4
, pp. 460-474
-
-
Mamitsuka, H.1
-
16
-
-
0036399733
-
Hidden Markov model-based prediction of antigenic peptides that interact with MHC class II molecules
-
DOI 10.1016/S1389-1723(02)80160-8
-
H. Noguchi, R. Kato, T. Hanai, Y. Matsubara, H. Honda, V. Brusic, and T. Kobayashi, "Hidden Markov Model-Based Prediction of Antigenic Peptides that Interact with MHC Class II Molecules," J. Bioscience and Bioeng., vol. 94, no. 3, pp. 264-270, 2002. (Pubitemid 35192075)
-
(2002)
Journal of Bioscience and Bioengineering
, vol.94
, Issue.3
, pp. 264-270
-
-
Noguchi, H.1
Kato, R.2
Hanai, T.3
Matsubara, Y.4
Honda, H.5
Brusic, V.6
Kobayashi, T.7
-
17
-
-
0037407113
-
Reliable prediction of T-cell epitopes using neural networks with novel sequence representations
-
DOI 10.1110/ps.0239403
-
M. Nielsen, C. Lundegaard, P. Worning, S. Lauemøller, K. Lamberth, S. Buus, S. Brunak, and O. Lund, "Reliable Prediction of T-Cell Epitopes Using Neural Networks with Novel Sequence Representations," Protein Science, vol. 12, pp. 1007-1017, 2003. (Pubitemid 36505435)
-
(2003)
Protein Science
, vol.12
, Issue.5
, pp. 1007-1017
-
-
Nielsen, M.1
Lundegaard, C.2
Worning, P.3
Lauemoller, S.L.4
Lamberth, K.5
Buus, S.6
Brunak, S.7
Lund, O.8
-
18
-
-
10744222046
-
Sensitive quantitative predictions of peptide-MHC binding by a 'Query by Committee' artificial neural network approach
-
DOI 10.1034/j.1399-0039.2003.00112.x
-
S. Buus, S. Lauemoller, P. Worning, C. Kesmir, T. Frimurer, S. Corbet, A. Fomsgaard, J. Hilden, A. Holm, and S. Brunak, "Sensitive Quantitative Predictions of Peptide-MHC Binding by a'Query by Committee' Artificial Neural Network Approach," Tissue Antigens, vol. 62, no. 5, pp. 378-384, 2003. (Pubitemid 37345160)
-
(2003)
Tissue Antigens
, vol.62
, Issue.5
, pp. 378-384
-
-
Buus, S.1
Lauemoller, S.L.2
Worning, P.3
Kesmir, C.4
Frimurer, T.5
Corbet, S.6
Fomsgaard, A.7
Hilden, J.8
Holm, A.9
Brunak, S.10
-
19
-
-
33747839161
-
SVMHC: A server for prediction of MHC-binding peptides
-
DOI 10.1093/nar/gkl284
-
P. Donnes and O. Kohlbacher, "SVMHC: A Server for Prediction of MHC-Binding Peptides," Nucleic Acids Research, vol. 34, no. Web Server issue, pp. W194-W197, 2006. (Pubitemid 44529763)
-
(2006)
Nucleic Acids Research
, vol.34
, Issue.WEB. SERV. ISS.
-
-
Donnes, P.1
Kohlbacher, O.2
-
20
-
-
1342288007
-
SVM based method for predicting HLA-DRB1 0401 binding peptides in an antigen sequence
-
DOI 10.1093/bioinformatics/btg424
-
M. Bhasin and G. Raghava, "SVM Based Method for Predicting HLA-DRB1 0401 Binding Peptides in an Antigen Sequence," Bioinformatics, vol. 20, pp. 421-423, 2004. (Pubitemid 38262776)
-
(2004)
Bioinformatics
, vol.20
, Issue.3
, pp. 421-423
-
-
Bhasin, M.1
Raghava, G.P.S.2
-
21
-
-
33748792816
-
Prediction of MHC-Binding peptides of flexible lengths from sequence-derived structural and physicochemical properties
-
J. Cui, L. Han, H. Lin, H. Zhang, Z. Tang, C. Zheng, Z. Cao, and Y. Chen, "Prediction of MHC-Binding Peptides of Flexible Lengths from Sequence-Derived Structural and Physicochemical Properties," Molecular Immunology, vol. 44, pp. 866-877, 2006.
-
(2006)
Molecular Immunology
, vol.44
, pp. 866-877
-
-
Cui, J.1
Han, L.2
Lin, H.3
Zhang, H.4
Tang, Z.5
Zheng, C.6
Cao, Z.7
Chen, Y.8
-
22
-
-
33845240573
-
Predicting class II MHC-Peptide binding: A kernel based approach using similarity scores
-
article no. 501
-
J. Salomon and D. Flower, "Predicting Class II MHC-Peptide Binding: A Kernel Based Approach Using Similarity Scores," BMC Bioinformatics, vol. 7, no. 1, article no. 501, 2006.
-
(2006)
BMC Bioinformatics
, vol.7
, Issue.1
-
-
Salomon, J.1
Flower, D.2
-
23
-
-
33750990098
-
Prediction of MHC class II binding peptides based on an iterative learning model
-
N. Murugan and Y. Dai, "Prediction of MHC Class II Binding Peptides Based on an Iterative Learning Model," Immunome Research, vol. 1, no. 1, p. 6, 2005.
-
(2005)
Immunome Research
, vol.1
, Issue.1
, pp. 6
-
-
Murugan, N.1
Dai, Y.2
-
24
-
-
33947372576
-
PepDist: A new framework for protein-peptide binding prediction based on learning peptide distance functions
-
T. Hertz and C. Yanover, "PepDist: A New Framework for Protein-Peptide Binding Prediction Based on Learning Peptide Distance Functions," BMC Bioinformatics, vol. 7, pp. S1-S3, 2006.
-
(2006)
BMC Bioinformatics
, vol.7
-
-
Hertz, T.1
Yanover, C.2
-
25
-
-
0002759539
-
Unsupervised learning of multiple motifs in biopolymers using expectation maximization
-
T. Bailey and C. Elkan, "Unsupervised Learning of Multiple Motifs in Biopolymers Using Expectation Maximization," Machine Learning, vol. 21, no. 1, pp. 51-80, 1995.
-
(1995)
Machine Learning
, vol.21
, Issue.1
, pp. 51-80
-
-
Bailey, T.1
Elkan, C.2
-
26
-
-
0027912333
-
Detecting subtle sequence signals: A gibbs sampling strategy for multiple alignment
-
C. Lawrence, S. Altschul, M. Boguski, J. Liu, A. Neuwald, and J. Wootton, "Detecting Subtle Sequence Signals: A Gibbs Sampling Strategy for Multiple Alignment," Science, vol. 262, no. 5131, pp. 208-214, 1993.
-
(1993)
Science
, vol.262
, Issue.5131
, pp. 208-214
-
-
Lawrence, C.1
Altschul, S.2
Boguski, M.3
Liu, J.4
Neuwald, A.5
Wootton, J.6
-
27
-
-
0001953837
-
Genetic algorithms for multiobjective optimization: Formulation, discussion and generalization
-
C. Fonseca and P. Fleming, "Genetic Algorithms for Multiobjective Optimization: Formulation, Discussion and Generalization," Proc. Fifth Int'l Conf. Genetic Algorithms, vol. 423, pp. 416- 423, 1993.
-
(1993)
Proc. Fifth Int'l Conf. Genetic Algorithms
, vol.423
, pp. 416-423
-
-
Fonseca, C.1
Fleming, P.2
-
28
-
-
5744249209
-
Equation of state calculations by fast computing machines
-
N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, and E. Teller, "Equation of State Calculations by Fast Computing Machines," J. Chemical Physics, vol. 21, p. 1087, 2004.
-
(2004)
J. Chemical Physics
, vol.21
, pp. 1087
-
-
Metropolis, N.1
Rosenbluth, A.2
Rosenbluth, M.3
Teller, A.4
Teller, E.5
-
29
-
-
0026860799
-
Robust linear programming discrimination of two linearly inseparable sets
-
K. Bennett and O. Mangasarian, "Robust Linear Programming Discrimination of Two Linearly Inseparable Sets," Optimization Methods and Software, vol. 1, no. 1, pp. 23-34, 1992. (Pubitemid 23615796)
-
(1992)
Optimization Methods and Software
, vol.1
, Issue.1
, pp. 23-34
-
-
Bennett Kristin, P.1
Mangasarian, O.L.2
-
30
-
-
33751020273
-
Peptide length-based prediction of peptide - MHC class II binding
-
DOI 10.1093/bioinformatics/btl479
-
S. Chang, D. Ghosh, D. Kirschner, and J. Linderman, "Peptide Length-Based Prediction of Peptide-MHC Class II Binding," Bioinformatics, vol. 22, no. 22, pp. 2761-2767, 2006. (Pubitemid 44742396)
-
(2006)
Bioinformatics
, vol.22
, Issue.22
, pp. 2761-2767
-
-
Chang, S.T.1
Ghosh, D.2
Kirschner, D.E.3
Linderman, J.J.4
-
31
-
-
70449359806
-
NN-Align. An artificial neural network-based alignment algorithm for MHC class II peptide binding prediction
-
article no. 296
-
M. Nielsen and O. Lund, "NN-Align. An Artificial Neural Network-Based Alignment Algorithm for MHC Class II Peptide Binding Prediction," BMC Bioinformatics, vol. 10, no. 1, article no. 296, 2009.
-
(2009)
BMC Bioinformatics
, vol.10
, Issue.1
-
-
Nielsen, M.1
Lund, O.2
-
32
-
-
33947180489
-
MILES: Multiple-instance learning via embedded instance selection
-
Y. Chen, J. Bi, and J. Wang, "MILES: Multiple-Instance Learning via Embedded Instance Selection," IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 28, no. 12, pp. 1931-1947, Dec. 2006. (Pubitemid 46405705)
-
(2006)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.28
, Issue.12
, pp. 1931-1947
-
-
Chen, Y.1
Bi, J.2
Wang, J.Z.3
-
33
-
-
0030649484
-
Solving the multiple instance problem with axis-parallel rectangles
-
PII S0004370296000343
-
R.H. Dietterich, T.G. Lathrop, and T. Lozano-Perez, "Solving the Multiple-Instance Problem with Axis Parallel Rectangles," Artificial Intelligence, vol. 89, nos. 1/2, pp. 31-71, 1997. (Pubitemid 127412230)
-
(1997)
Artificial Intelligence
, vol.89
, Issue.1-2
, pp. 31-71
-
-
Dietterich, T.G.1
Lathrop, R.H.2
Lozano-Perez, T.3
-
35
-
-
0141596676
-
Solving the multiple-instance problem: A lazy learning approach
-
J. Wang and J.D. Zucker, "Solving the Multiple-Instance Problem: A Lazy Learning Approach," Proc. 17th Int'l Conf. Machine Learning, pp. 1119-1125, 2000.
-
(2000)
Proc. 17th Int'l Conf. Machine Learning
, pp. 1119-1125
-
-
Wang, J.1
Zucker, J.D.2
-
38
-
-
85141266799
-
Support vector machines for multiple-instance learning
-
S. Andrews, I. Tsochantaridis, and T. Hofmann, "Support Vector Machines for Multiple-Instance Learning," Advances in Neural Information Processing Systems, vol. 15, pp. 561-568, 2002.
-
(2002)
Advances in Neural Information Processing Systems
, vol.15
, pp. 561-568
-
-
Andrews, S.1
Tsochantaridis, I.2
Hofmann, T.3
-
39
-
-
4444252785
-
Multi-Instance kernels
-
T. Gartner, P. Flach, A. Kowalczyk, and A. Smola, "Multi-Instance Kernels," Proc. 19th Int'l Conf. Machine Learning, pp. 179-186, 2002.
-
(2002)
Proc. 19th Int'l Conf. Machine Learning
, pp. 179-186
-
-
Gartner, T.1
Flach, P.2
Kowalczyk, A.3
Smola, A.4
-
41
-
-
33947158134
-
On generalized multiple- instance learning
-
S. Scott, J. Zhang, and J. Brown, "On Generalized Multiple- Instance Learning," Int'l J. Computational Intelligence and Applications, vol. 5, no. 1, pp. 21-35, 2005.
-
(2005)
Int'l J. Computational Intelligence and Applications
, vol.5
, Issue.1
, pp. 21-35
-
-
Scott, S.1
Zhang, J.2
Brown, J.3
-
42
-
-
56549100329
-
Kernels for generalized multiple-instance learning
-
Dec.
-
Q. Tao, S. Scott, N. Vinodchandran, T. Osugi, and B. Mueller, "Kernels for Generalized Multiple-Instance Learning," IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 30, no. 12, pp. 2084-2098, Dec. 2008.
-
(2008)
IEEE Trans. Pattern Analysis and Machine Intelligence
, vol.30
, Issue.12
, pp. 2084-2098
-
-
Tao, Q.1
Scott, S.2
Vinodchandran, N.3
Osugi, T.4
Mueller, B.5
-
43
-
-
0002288190
-
Multiple-Instance learning for natural scene classification
-
O. Maron and A. Ratan, "Multiple-Instance Learning for Natural Scene Classification," Proc. 15th Int'l Conf. Machine Learning, pp. 341-349, 1998.
-
(1998)
Proc. 15th Int'l Conf. Machine Learning
, pp. 341-349
-
-
Maron, O.1
Ratan, A.2
-
44
-
-
0344425673
-
Content-Based image retrieval using multiple-instance learning
-
Q. Zhang, S. Goldman, W. Yu, and J. Fritts, "Content-Based Image Retrieval Using Multiple-Instance Learning," Proc. 19th Int'l Conf. Machine Learning, pp. 682-689, 2002.
-
(2002)
Proc. 19th Int'l Conf. Machine Learning
, pp. 682-689
-
-
Zhang, Q.1
Goldman, S.2
Yu, W.3
Fritts, J.4
-
45
-
-
15544389390
-
Multi-instance learning based web mining
-
DOI 10.1007/s10489-005-5602-z
-
Z. Zhou, K. Jiang, and M. Li, "Multi-Instance Learning Based Web Mining," Applied Intelligence, vol. 22, no. 2, pp. 135-147, 2005. (Pubitemid 40400730)
-
(2005)
Applied Intelligence
, vol.22
, Issue.2
, pp. 135-147
-
-
Zhou, Z.-H.1
Jiang, K.2
Li, M.3
-
46
-
-
84864047275
-
Multiple instance learning for computer aided diagnosis
-
G. Fung, M. Dundar, B. Krishnapuram, and R. Rao, "Multiple Instance Learning for Computer Aided Diagnosis," Proc. Conf. Advances in Neural Information Processing Systems, pp. 425-432, 2007.
-
(2007)
Proc. Conf. Advances in Neural Information Processing Systems
, pp. 425-432
-
-
Fung, G.1
Dundar, M.2
Krishnapuram, B.3
Rao, R.4
-
48
-
-
0037491973
-
Multiple-Instance learning of real- valued geometric patterns
-
S. Goldman and S. Scott, "Multiple-Instance Learning of Real- Valued Geometric Patterns," Annals of Math. and Artificial Intelligence, vol. 39, no. 3, pp. 259-290, 2003.
-
(2003)
Annals of Math. and Artificial Intelligence
, vol.39
, Issue.3
, pp. 259-290
-
-
Goldman, S.1
Scott, S.2
-
49
-
-
42949139524
-
A systematic assessment of MHC class II peptide binding predictions and evaluation of a consensus approach
-
P. Wang, J. Sidney, C. Dow, B. Mothé, A. Sette, and B. Peters, "A Systematic Assessment of MHC Class II Peptide Binding Predictions and Evaluation of a Consensus Approach," PLoS Computational Biology, vol. 4, no. 4, 2008.
-
(2008)
PLoS Computational Biology
, vol.4
, Issue.4
-
-
Wang, P.1
Sidney, J.2
Dow, C.3
Mothé, B.4
Sette, A.5
Peters, B.6
-
50
-
-
57649174707
-
Evaluation of MHC-II peptide binding prediction servers: Applications for vaccine research
-
article no. S22
-
H. Lin, G. Zhang, S. Tongchusak, E. Reinherz, and V. Brusic, "Evaluation of MHC-II Peptide Binding Prediction Servers: Applications for Vaccine Research," BMC Bioinformatics, vol. 9, article no. S22, 2008.
-
(2008)
BMC Bioinformatics
, vol.9
-
-
Lin, H.1
Zhang, G.2
Tongchusak, S.3
Reinherz, E.4
Brusic, V.5
-
51
-
-
48249083459
-
Quantitative predictions of peptide binding to any HLA-DR molecule of known sequence: NetMHCIIpan
-
M. Nielsen, C. Lundegaard, T. Blicher, B. Peters, A. Sette, S. Justesen, S. Buus, and O. Lund, "Quantitative Predictions of Peptide Binding to Any HLA-DR Molecule of Known Sequence: NetMHCIIpan," PLoS Computational Biology, vol. 4, no. 7, 2008.
-
(2008)
PLoS Computational Biology
, vol.4
, Issue.7
-
-
Nielsen, M.1
Lundegaard, C.2
Blicher, T.3
Peters, B.4
Sette, A.5
Justesen, S.6
Buus, S.7
Lund, O.8
-
52
-
-
0033954256
-
The protein data bank
-
H. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. Bhat, H. Weissig, I. Shindyalov, and P. Bourne, "The Protein Data Bank," Nucleic Acids Research, vol. 28, no. 1, pp. 235-242, 2000. (Pubitemid 30047768)
-
(2000)
Nucleic Acids Research
, vol.28
, Issue.1
, pp. 235-242
-
-
Berman, H.M.1
Westbrook, J.2
Feng, Z.3
Gilliland, G.4
Bhat, T.N.5
Weissig, H.6
Shindyalov, I.N.7
Bourne, P.E.8
-
53
-
-
84899024917
-
1-Norm support vector machines
-
J. Zhu, S. Kosset, T. Hastie, and R. Tibshirani, "1-Norm Support Vector Machines," Advances in Neural Information Processing Systems, vol. 16, pp. 49-56, 2004.
-
(2004)
Advances in Neural Information Processing Systems
, vol.16
, pp. 49-56
-
-
Zhu, J.1
Kosset, S.2
Hastie, T.3
Tibshirani, R.4
-
54
-
-
0034271493
-
Improvements to the SMO algorithm for SVM regression
-
Sept.
-
S. Shevade, S. Keerthi, C. Bhattacharyya, and K. Murthy, "Improvements to the SMO Algorithm for SVM Regression," IEEE Trans. Neural Networks, vol. 11, no. 5, pp. 1188-1193, Sept. 2000.
-
(2000)
IEEE Trans. Neural Networks
, vol.11
, Issue.5
, pp. 1188-1193
-
-
Shevade, S.1
Keerthi, S.2
Bhattacharyya, C.3
Murthy, K.4
-
55
-
-
0026458378
-
Amino acid substitution matrices from protein blocks
-
S. Henikoff and J. Henikoff, "Amino Acid Substitution Matrices from Protein Blocks," Proc. Nat'l Academy of Sciences USA, vol. 89, no. 22, pp. 10915-10919, 1992.
-
(1992)
Proc. Nat'l Academy of Sciences USA
, vol.89
, Issue.22
, pp. 10915-10919
-
-
Henikoff, S.1
Henikoff, J.2
-
56
-
-
0023890867
-
Measuring the accuracy of diagnostic systems
-
J. Swets, "Measuring the Accuracy of Diagnostic Systems," Science, vol. 240, no. 4857, pp. 1285-1293, 1988.
-
(1988)
Science
, vol.240
, Issue.4857
, pp. 1285-1293
-
-
Swets, J.1
-
57
-
-
0033021020
-
Generation of tissue-specific and promiscuous HLA ligand databases using DNA microarrays and virtual HLA class II matrices
-
DOI 10.1038/9858
-
T. Sturniolo et al., "Generation of Tissue-Specific and Promiscuous HLA Ligand Databases Using DNA Microarrays and Virtual HLA Class II matrices," Nature Biotechnology, vol. 17, pp. 555-561, 1999. (Pubitemid 29262918)
-
(1999)
Nature Biotechnology
, vol.17
, Issue.6
, pp. 555-561
-
-
Sturniolo, T.1
Bono, E.2
Ding, J.3
Raddrizzani, L.4
Tuereci, O.5
Sahin, U.6
Braxenthaler, M.7
Gallazzi, F.8
Protti, M.P.9
Sinigaglia, F.10
Hammer, J.11
-
58
-
-
20944447214
-
The immune epitope database and analysis resource: From vision to blueprint
-
B. Peters et al., "The Immune Epitope Database and Analysis Resource: From Vision to Blueprint," PLoS Biology, vol. 3, no. 3, pp. 379-381, 2005.
-
(2005)
PLoS Biology
, vol.3
, Issue.3
, pp. 379-381
-
-
Peters, B.1
-
60
-
-
29644438050
-
Statistical comparisons of classifiers over multiple data sets
-
J. Demšar, "Statistical Comparisons of Classifiers over Multiple Data Sets," J. Machine Learning Research, vol. 7, pp. 1-30, 2006. (Pubitemid 43022939)
-
(2006)
Journal of Machine Learning Research
, vol.7
, pp. 1-30
-
-
Demsar, J.1
-
61
-
-
0031825709
-
Prediction of MHC class II-binding peptides using an evolutionary algorithm and artificial neural network
-
V. Brusic, G. Rudy, G. Honeyman, J. Hammer, and L. Harrison, "Prediction of MHC Class II-Binding Peptides Using an Evolutionary Algorithm and Artificial Neural Network," Bioinformatics, vol. 14, no. 2, pp. 121-130, 1998. (Pubitemid 28395870)
-
(1998)
Bioinformatics
, vol.14
, Issue.2
, pp. 121-130
-
-
Brusic, V.1
Rudy, G.2
Honeyman, M.3
Hammer, J.4
Harrison, L.5
-
62
-
-
34547994564
-
Multiple instance classification via successive linear programming
-
Data Mining Inst.
-
O. Mangasarian and E. Wild, "Multiple Instance Classification via Successive Linear Programming," Technical Report 05-02, Data Mining Inst., 2005.
-
(2005)
Technical Report 05-02
-
-
Mangasarian, O.1
Wild, E.2
-
63
-
-
33947396751
-
Solving multi-instance problems with classifier ensemble based on constructive clustering
-
Z. Zhou and M. Zhang, "Solving Multi-Instance Problems with Classifier Ensemble Based on Constructive Clustering," Knowledge and Information Systems, vol. 11, no. 2, pp. 155-170, 2007.
-
(2007)
Knowledge and Information Systems
, vol.11
, Issue.2
, pp. 155-170
-
-
Zhou, Z.1
Zhang, M.2
-
64
-
-
9444267142
-
A two-level learning method for generalized multi-instance problems
-
Machine Learning: ECML 2003
-
N. Weidmann, E. Frank, and B. Pfahringer, "A Two-Level Learning Method for Generalized Multi-Instance Problems," Proc. European Conf. Machine Learning, pp. 468-479, 2003. (Pubitemid 37231000)
-
(2003)
Proc. European Conf. Machine Learning
, Issue.2837
, pp. 468-479
-
-
Weidmann, N.1
Frank, E.2
Pfahringer, B.3
|