-
1
-
-
14344261849
-
SVM-Based Generalized Multiple-Instance Learning via Approximate Box Counting
-
Q. Tao, S. Scott, N.V. Vinodchandran, and T. Osugi, "SVM-Based Generalized Multiple-Instance Learning via Approximate Box Counting," Proc. 21st Int'l Conf. Machine Learning, pp. 799-806, 2004.
-
(2004)
Proc. 21st Int'l Conf. Machine Learning
, pp. 799-806
-
-
Tao, Q.1
Scott, S.2
Vinodchandran, N.V.3
Osugi, T.4
-
2
-
-
16244377454
-
An Extended Kernel for Generalized Multiple-Instance Learning
-
Q. Tao, S. Scott, N.V. Vinodchandran, T. Osugi, and B. Mueller, "An Extended Kernel for Generalized Multiple-Instance Learning," Proc. 16th IEEE Int'l Conf. Tools with Artificial Intelligence, pp. 272-277, 2004.
-
(2004)
Proc. 16th IEEE Int'l Conf. Tools with Artificial Intelligence
, pp. 272-277
-
-
Tao, Q.1
Scott, S.2
Vinodchandran, N.V.3
Osugi, T.4
Mueller, B.5
-
3
-
-
0030649484
-
Solving the Multiple-Instance Problem with Axis-Parallel Rectangles
-
T.G. Dietterich, R.H. Lathrop, and T. Lozano-Perez, "Solving the Multiple-Instance Problem with Axis-Parallel Rectangles," Artificial Intelligence, vol. 89, nos. 1-2, pp. 31-71, 1997.
-
(1997)
Artificial Intelligence
, vol.89
, Issue.1-2
, pp. 31-71
-
-
Dietterich, T.G.1
Lathrop, R.H.2
Lozano-Perez, T.3
-
5
-
-
0344425673
-
Content-Based Image Retrieval Using Multiple-Instance Learning
-
Q. Zhang, S.A. Goldman, W. Yu, and J.E. Fritts, "Content-Based Image Retrieval Using Multiple-Instance Learning," Proc. 19th Int'l Conf. Machine Learning, pp. 682-689, 2002.
-
(2002)
Proc. 19th Int'l Conf. Machine Learning
, pp. 682-689
-
-
Zhang, Q.1
Goldman, S.A.2
Yu, W.3
Fritts, J.E.4
-
6
-
-
84863161940
-
Image Categorization by Learning and Reasoning with Regions
-
Aug
-
Y. Chen and J.Z. Wang, "Image Categorization by Learning and Reasoning with Regions," J. Machine Learning Research, vol. 5, pp. 913-939, Aug. 2004.
-
(2004)
J. Machine Learning Research
, vol.5
, pp. 913-939
-
-
Chen, Y.1
Wang, J.Z.2
-
7
-
-
0345529091
-
A Novel Bag Generator for Image Database Retrieval with Multi-Instance Learning Techniques
-
Z. Zhou, M. Zhang, and K. Chen, "A Novel Bag Generator for Image Database Retrieval with Multi-Instance Learning Techniques," Proc. 15th IEEE Int'l Conf. Tools with Artificial Intelligence, pp. 565-569, 2003.
-
(2003)
Proc. 15th IEEE Int'l Conf. Tools with Artificial Intelligence
, pp. 565-569
-
-
Zhou, Z.1
Zhang, M.2
Chen, K.3
-
8
-
-
0033884407
-
Image Database Retrieval with Multiple-Instance Learning Techniques
-
C. Yang and T. Lozano-Pérez, "Image Database Retrieval with Multiple-Instance Learning Techniques," Proc. 16th Int'l Conf. Data Eng., pp. 233-243, 2000.
-
(2000)
Proc. 16th Int'l Conf. Data Eng
, pp. 233-243
-
-
Yang, C.1
Lozano-Pérez, T.2
-
9
-
-
56549096393
-
-
S. Scott, J. Zhang, and J. Brown, On Generalized Multiple-Instance Learning, Int'l J. Computational Intelligence and Applications, 5, no. 1, pp. 21-35, Mar. 2005.
-
S. Scott, J. Zhang, and J. Brown, "On Generalized Multiple-Instance Learning," Int'l J. Computational Intelligence and Applications, vol. 5, no. 1, pp. 21-35, Mar. 2005.
-
-
-
-
10
-
-
0035251085
-
Agnostic Learning of Geometric Patterns
-
Feb
-
S.A. Goldman, S.K. Kwek, and S.D. Scott, "Agnostic Learning of Geometric Patterns," J. Computer and System Sciences, vol. 6, no. 1, pp. 123-151, Feb. 2001.
-
(2001)
J. Computer and System Sciences
, vol.6
, Issue.1
, pp. 123-151
-
-
Goldman, S.A.1
Kwek, S.K.2
Scott, S.D.3
-
11
-
-
34250091945
-
Learning Quickly When Irrelevant Attributes Abound: A New Linear-Threshold Algorithm
-
N. Littlestone, "Learning Quickly When Irrelevant Attributes Abound: A New Linear-Threshold Algorithm," Machine Learning, vol. 2, no. 4, pp. 285-318, 1988.
-
(1988)
Machine Learning
, vol.2
, Issue.4
, pp. 285-318
-
-
Littlestone, N.1
-
14
-
-
17144429687
-
Feature Space Interpretation of SVMs with Indefinite Kernels
-
Apr
-
T. Haasdonk, "Feature Space Interpretation of SVMs with Indefinite Kernels," IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 27, no. 4, pp. 482-492, Apr. 2005.
-
(2005)
IEEE Trans. Pattern Analysis and Machine Intelligence
, vol.27
, Issue.4
, pp. 482-492
-
-
Haasdonk, T.1
-
15
-
-
9444267142
-
A Two-Level Learning Method for Generalized Multi-Instance Problems
-
N. Weidmann, E. Frank, and B. Pfahringer, "A Two-Level Learning Method for Generalized Multi-Instance Problems," Proc. European Conf. Machine Learning, pp. 468-479, 2003.
-
(2003)
Proc. European Conf. Machine Learning
, pp. 468-479
-
-
Weidmann, N.1
Frank, E.2
Pfahringer, B.3
-
16
-
-
85141266799
-
Support Vector Machines for Multiple-Instance Learning
-
S. Andrews, I. Tsochantaridis, and T. Hofmann, "Support Vector Machines for Multiple-Instance Learning," Advances in Neural Information Processing Systems, vol. 15, pp. 561-568, 2002.
-
(2002)
Advances in Neural Information Processing Systems
, vol.15
, pp. 561-568
-
-
Andrews, S.1
Tsochantaridis, I.2
Hofmann, T.3
-
19
-
-
0002469253
-
On Learning from Multi-Instance Examples: Empirical Evaluation of a Theoretical Approach
-
P. Auer, "On Learning from Multi-Instance Examples: Empirical Evaluation of a Theoretical Approach," Proc. 14th Int'l Conf. Machine Learning, pp. 21-29, 1997.
-
(1997)
Proc. 14th Int'l Conf. Machine Learning
, pp. 21-29
-
-
Auer, P.1
-
21
-
-
0031701616
-
PAC Learning Axis-Aligned Rectangles with Respect to Product Distributions from Multiple-Instance Examples
-
P.M. Long and L. Tan, "PAC Learning Axis-Aligned Rectangles with Respect to Product Distributions from Multiple-Instance Examples," Machine Learning, vol. 30, pp. 7-21, 1998.
-
(1998)
Machine Learning
, vol.30
, pp. 7-21
-
-
Long, P.M.1
Tan, L.2
-
22
-
-
0031704194
-
A Note on Learning from Multiple-Instance Examples
-
A. Blum and A. Kalai, "A Note on Learning from Multiple-Instance Examples," Machine Learning, vol. 30, pp. 23-29, 1998.
-
(1998)
Machine Learning
, vol.30
, pp. 23-29
-
-
Blum, A.1
Kalai, A.2
-
23
-
-
0141596676
-
Solving the Multiple-Instance Problem: A Lazy Learning Approach
-
J. Wang and J.-D. Zucker, "Solving the Multiple-Instance Problem: A Lazy Learning Approach," Proc. 17th Int'l Conf. Machine Learning, pp. 1119-1125, 2000.
-
(2000)
Proc. 17th Int'l Conf. Machine Learning
, pp. 1119-1125
-
-
Wang, J.1
Zucker, J.-D.2
-
24
-
-
0012349465
-
EM-DD: An Improved Multiple-Instance Learning Technique
-
Q. Zhang and S.A. Goldman, "EM-DD: An Improved Multiple-Instance Learning Technique," Neural Information Processing Systems, vol. 14, pp. 1073-1080, 2001.
-
(2001)
Neural Information Processing Systems
, vol.14
, pp. 1073-1080
-
-
Zhang, Q.1
Goldman, S.A.2
-
26
-
-
0030642912
-
Approximating Hyper-Rectangles: Learning and Pseudo-Random Sets
-
P. Auer, P.M. Long, and A. Srinivasan, "Approximating Hyper-Rectangles: Learning and Pseudo-Random Sets," Proc. 29th Ann. ACM Symp. Theory of Computing, pp. 314-323, 1997.
-
(1997)
Proc. 29th Ann. ACM Symp. Theory of Computing
, pp. 314-323
-
-
Auer, P.1
Long, P.M.2
Srinivasan, A.3
-
27
-
-
31844431728
-
Multi-Instance Tree Learning
-
H. Blockeel, D. Page, and A. Srinivasan, "Multi-Instance Tree Learning," Proc. 22nd Int'l Conf. Machine Learning, pp. 57-64, 2005.
-
(2005)
Proc. 22nd Int'l Conf. Machine Learning
, pp. 57-64
-
-
Blockeel, H.1
Page, D.2
Srinivasan, A.3
-
29
-
-
4444252785
-
Multi-Instance Kernels
-
T. Gärtner, P.A. Flach, A. Kowalczyk, and A.J. Smola, "Multi-Instance Kernels," Proc. 19th Int'l Conf. Machine Learning pp. 179-186, 2002.
-
(2002)
Proc. 19th Int'l Conf. Machine Learning
, pp. 179-186
-
-
Gärtner, T.1
Flach, P.A.2
Kowalczyk, A.3
Smola, A.J.4
-
30
-
-
0141830875
-
Multiple-Instance Learning of Real-Valued Data
-
Dec
-
D.R. Dooly, Q. Zhang, S.A. Goldman, and R.A. Amar, "Multiple-Instance Learning of Real-Valued Data," J. Machine Learning Research, vol. 3, pp. 651-678, Dec. 2002.
-
(2002)
J. Machine Learning Research
, vol.3
, pp. 651-678
-
-
Dooly, D.R.1
Zhang, Q.2
Goldman, S.A.3
Amar, R.A.4
-
32
-
-
31844448950
-
Supervised versus Multiple-Instance Learning: An Empirical Comparison
-
S. Ray and M. Craven, "Supervised versus Multiple-Instance Learning: An Empirical Comparison," Proc. 22nd Int'l Conf. Machine Learning, pp. 697-704, 2005.
-
(2005)
Proc. 22nd Int'l Conf. Machine Learning
, pp. 697-704
-
-
Ray, S.1
Craven, M.2
-
33
-
-
4444241047
-
Attribute-Value Learning versus Inductive Logic Programming: The Missing Links
-
L. De Raedt, "Attribute-Value Learning versus Inductive Logic Programming: The Missing Links," Proc. Eighth Int'l Conf. Inductive Logic Programming, pp. 1-8, 1998.
-
(1998)
Proc. Eighth Int'l Conf. Inductive Logic Programming
, pp. 1-8
-
-
De Raedt, L.1
-
34
-
-
33947180489
-
MILES: Multiple-Instance Learning via Embedded Instance Selection
-
Dec
-
Y. Chen, J. Bi, and J.Z. Wang, "MILES: Multiple-Instance Learning via Embedded Instance Selection," IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 28, no. 12, pp. 1931-1947, Dec. 2006.
-
(2006)
IEEE Trans. Pattern Analysis and Machine Intelligence
, vol.28
, Issue.12
, pp. 1931-1947
-
-
Chen, Y.1
Bi, J.2
Wang, J.Z.3
-
35
-
-
0001784922
-
Efficient Learning with Virtual Threshold Gates
-
W. Maass and M.K. Warmuth, "Efficient Learning with Virtual Threshold Gates," Information and Computation, vol. 141, no. 1, pp. 66-83, 1998.
-
(1998)
Information and Computation
, vol.141
, Issue.1
, pp. 66-83
-
-
Maass, W.1
Warmuth, M.K.2
-
36
-
-
0000511449
-
Redundant Noisy Attributes, Attribute Errors, and Linear Threshold Learning Using Winnow
-
N. Littlestone, "Redundant Noisy Attributes, Attribute Errors, and Linear Threshold Learning Using Winnow," Proc. Fourth Ann. Workshop Computational Learning Theory, pp. 147-156, 1991.
-
(1991)
Proc. Fourth Ann. Workshop Computational Learning Theory
, pp. 147-156
-
-
Littlestone, N.1
-
37
-
-
11144273669
-
-
Psychological Rev, reprinted in Neurocomputing MIT Press, 1988
-
F. Rosenblatt, "The Perceptron: A Probabilistic Model for Information Storage and Organization in the Brain," Psychological Rev., vol. 65, pp. 386-407, 1958 (reprinted in Neurocomputing (MIT Press, 1988)).
-
(1958)
The Perceptron: A Probabilistic Model for Information Storage and Organization in the Brain
, vol.65
, pp. 386-407
-
-
Rosenblatt, F.1
-
40
-
-
0003408420
-
-
MIT Press
-
B. Schölkopf and A.J. Smola, Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. MIT Press, 2002.
-
(2002)
Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond
-
-
Schölkopf, B.1
Smola, A.J.2
-
42
-
-
31144459461
-
Efficiency versus Convergence of Boolean Kernels for Online Learning Algorithms
-
Sept
-
R. Khardon, D. Roth, and R. Servedio, "Efficiency versus Convergence of Boolean Kernels for Online Learning Algorithms," J. Artificial Intelligence Research, vol. 24, pp. 341-356, Sept. 2005.
-
(2005)
J. Artificial Intelligence Research
, vol.24
, pp. 341-356
-
-
Khardon, R.1
Roth, D.2
Servedio, R.3
-
43
-
-
24944560940
-
Maximum Margin Algorithms with Boolean Kernels
-
R. Khardon and R. Servedio, "Maximum Margin Algorithms with Boolean Kernels," J. Machine Learning Research, vol. 6, pp. 1405-1429, 2005.
-
(2005)
J. Machine Learning Research
, vol.6
, pp. 1405-1429
-
-
Khardon, R.1
Servedio, R.2
-
46
-
-
0000142982
-
The Complexity of Enumeration and Reliability Problems
-
L.G. Valiant, "The Complexity of Enumeration and Reliability Problems," SIAM J. Computing, vol. 8, pp. 410-421, 1979.
-
(1979)
SIAM J. Computing
, vol.8
, pp. 410-421
-
-
Valiant, L.G.1
-
47
-
-
0001202403
-
Monte-Carlo Approximation Algorithms for Enumeration Problems
-
R. Karp, M. Luby, and N. Madras, "Monte-Carlo Approximation Algorithms for Enumeration Problems," J. Algorithms, vol. 10, pp. 429-448, 1989.
-
(1989)
J. Algorithms
, vol.10
, pp. 429-448
-
-
Karp, R.1
Luby, M.2
Madras, N.3
-
48
-
-
40549141405
-
A Kernel Approach for Learning from Almost Orthogonal Patterns
-
B. Schölkopf, J. Weston, E. Eskin, C. Leslie, and W.S. Noble, "A Kernel Approach for Learning from Almost Orthogonal Patterns," Proc. 13th European Conf. Machine Learning, pp. 511-528, 2002.
-
(2002)
Proc. 13th European Conf. Machine Learning
, pp. 511-528
-
-
Schölkopf, B.1
Weston, J.2
Eskin, E.3
Leslie, C.4
Noble, W.S.5
-
49
-
-
0002714543
-
Making Large-Scale SVM Learning Practical
-
B. Schölkopf, C. Burges, and A. Smola, eds, chapter 11, pp, MIT Press
-
T. Joachims, "Making Large-Scale SVM Learning Practical," Advances in Kernel Methods: Support Vector Learning, B. Schölkopf, C. Burges, and A. Smola, eds., chapter 11, pp. 169-184, MIT Press, 1999.
-
(1999)
Advances in Kernel Methods: Support Vector Learning
, pp. 169-184
-
-
Joachims, T.1
-
50
-
-
84990575058
-
Orthonormal Bases of Compactly Supported Wavelets
-
I. Daubechies, "Orthonormal Bases of Compactly Supported Wavelets," Comm. Pure and Applied Math., vol. 41, pp. 909-996, 1988.
-
(1988)
Comm. Pure and Applied Math
, vol.41
, pp. 909-996
-
-
Daubechies, I.1
-
51
-
-
0001138328
-
Algorithm AS136: A K-Means Clustering Algorithm
-
J.A. Hartigan and M.A. Wong, "Algorithm AS136: A K-Means Clustering Algorithm," Applied Statistics, vol. 28, pp. 100-108, 1979.
-
(1979)
Applied Statistics
, vol.28
, pp. 100-108
-
-
Hartigan, J.A.1
Wong, M.A.2
-
52
-
-
0035440673
-
SIMPLIcity: Semantics-Sensitive Integrated Matching for Picture Libraries
-
Sept
-
J.Z. Wang, J. Li, and G. Wiederhold, "SIMPLIcity: Semantics-Sensitive Integrated Matching for Picture Libraries," IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 23, no. 9, pp. 947-963, Sept. 2001.
-
(2001)
IEEE Trans. Pattern Analysis and Machine Intelligence
, vol.23
, Issue.9
, pp. 947-963
-
-
Wang, J.Z.1
Li, J.2
Wiederhold, G.3
-
53
-
-
14344259407
-
A Study in Modeling Low-Conservation Protein Superfamilies,
-
Technical Report TR-UNL-CSE-2004-3, Dept. of Computer Science, Univ. of Nebraska
-
C. Wang, S. Scott, J. Zhang, Q. Tao, D.E. Fomenko, and V.N. Gladyshev, "A Study in Modeling Low-Conservation Protein Superfamilies," Technical Report TR-UNL-CSE-2004-3, Dept. of Computer Science, Univ. of Nebraska, 2004.
-
(2004)
-
-
Wang, C.1
Scott, S.2
Zhang, J.3
Tao, Q.4
Fomenko, D.E.5
Gladyshev, V.N.6
-
54
-
-
0033665668
-
Identification of Novel Multi-Transmembrane Proteins from Genomic Databases Using Quasi-Periodic Structural Properties
-
J. Kim, E.N. Moriyama, C.G. Warr, P.J. Clyne, and J.R. Carlson, "Identification of Novel Multi-Transmembrane Proteins from Genomic Databases Using Quasi-Periodic Structural Properties," Bioinformatics, vol. 16, no. 9, pp. 767-775, 2000.
-
(2000)
Bioinformatics
, vol.16
, Issue.9
, pp. 767-775
-
-
Kim, J.1
Moriyama, E.N.2
Warr, C.G.3
Clyne, P.J.4
Carlson, J.R.5
-
55
-
-
0022510143
-
Identifying Non-Polar Transbilayer Helices in Amino Acid Sequences of Membrane Proteins
-
D.M. Engelman, T.A. Steitz, and A. Goldman, "Identifying Non-Polar Transbilayer Helices in Amino Acid Sequences of Membrane Proteins," Ann. Rev. Biophysics and Biophysical Chemistry, vol. 15, pp. 321-353, 1986.
-
(1986)
Ann. Rev. Biophysics and Biophysical Chemistry
, vol.15
, pp. 321-353
-
-
Engelman, D.M.1
Steitz, T.A.2
Goldman, A.3
-
56
-
-
0026716643
-
Membrane Protein Structure Prediction: Hydrophobicity Analysis and the Positive-Inside Rule
-
G.V. Heijne, "Membrane Protein Structure Prediction: Hydrophobicity Analysis and the Positive-Inside Rule," J. Molecular Biology, vol. 225, pp. 487-494, 1992.
-
(1992)
J. Molecular Biology
, vol.225
, pp. 487-494
-
-
Heijne, G.V.1
-
58
-
-
0020475449
-
A Simple Method for Displaying the Hydropathic Character of a Protein
-
J. Kyte and R.F. Doolittle, "A Simple Method for Displaying the Hydropathic Character of a Protein," J. Molecular Biology, vol. 157, pp. 105-132, 1982.
-
(1982)
J. Molecular Biology
, vol.157
, pp. 105-132
-
-
Kyte, J.1
Doolittle, R.F.2
-
59
-
-
0001040367
-
An Algorithm for Protein Secondary Structure Prediction Based on Class Prediction
-
G. Deleage and B. Roux, "An Algorithm for Protein Secondary Structure Prediction Based on Class Prediction," Protein Eng., vol. 1, pp. 289-294, 1987.
-
(1987)
Protein Eng
, vol.1
, pp. 289-294
-
-
Deleage, G.1
Roux, B.2
|