-
1
-
-
27144531570
-
A study of the behavior of several methods for balancing machine learning training data
-
G. Batista, R. C. Prati, and M. C. Monard. A study of the behavior of several methods for balancing machine learning training data. SIGKDD Explorations Newsletter, 6(1):20-29, 2004.
-
(2004)
SIGKDD Explorations Newsletter
, vol.6
, Issue.1
, pp. 20-29
-
-
Batista, G.1
Prati, R.C.2
Monard, M.C.3
-
2
-
-
0030211964
-
Bagging predictors
-
L. Breiman. Bagging predictors. Machine Learning, 24(2):123-140, 1996.
-
(1996)
Machine Learning
, vol.24
, Issue.2
, pp. 123-140
-
-
Breiman, L.1
-
3
-
-
0035478854
-
Random forests
-
L. Breiman. Random forests. Machine Learning, 45(1):5-32, 2001.
-
(2001)
Machine Learning
, vol.45
, Issue.1
, pp. 5-32
-
-
Breiman, L.1
-
4
-
-
0346586663
-
SMOTE: Synthetic minority over-sampling technique
-
N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer. SMOTE: Synthetic minority over-sampling technique. Journal of Artificial Intelligence and Research, 16:321-357, 2002.
-
(2002)
Journal of Artificial Intelligence and Research
, vol.16
, pp. 321-357
-
-
Chawla, N.V.1
Bowyer, K.W.2
Hall, L.O.3
Kegelmeyer, W.P.4
-
5
-
-
27144549260
-
Editorial: Special issue on learning from imbalanced data sets
-
N. V. Chawla, N. Japkowicz, and A. Kotcz. Editorial: special issue on learning from imbalanced data sets. SIGKDD Explorations Newsletter, 6(1):1-6, 2004.
-
(2004)
SIGKDD Explorations Newsletter
, vol.6
, Issue.1
, pp. 1-6
-
-
Chawla, N.V.1
Japkowicz, N.2
Kotcz, A.3
-
6
-
-
9444297357
-
SMOTEBoost: Improving prediction of the minority class in boosting
-
N. V. Chawla, A. Lazarevic, L. O. Hall, and K. W. Bowyer. SMOTEBoost: Improving prediction of the minority class in boosting. In Proceedings of the Seventh European Conference on Principles and Practice of Knowledge Discovery in Databases (PKDD), pages 107-119, 2003.
-
(2003)
Proceedings of the Seventh European Conference on Principles and Practice of Knowledge Discovery in Databases (PKDD)
, pp. 107-119
-
-
Chawla, N.V.1
Lazarevic, A.2
Hall, L.O.3
Bowyer, K.W.4
-
7
-
-
20444392475
-
Using random forest to learn imbalanced data
-
Technical report, Department of Statistics, University of California, Berkeley
-
C. Chen, A. Liaw, and L. Breiman, Using random forest to learn imbalanced data. Technical report, Department of Statistics, University of California, Berkeley, 2004.
-
(2004)
-
-
Chen, C.1
Liaw, A.2
Breiman, L.3
-
9
-
-
0344324689
-
Metacost: A general method for making classifiers cost-sensitive
-
P. Domingos. Metacost: A general method for making classifiers cost-sensitive, In Knowledge Discovery and Data Mining, pages 155-164, 1999.
-
(1999)
Knowledge Discovery and Data Mining
, pp. 155-164
-
-
Domingos, P.1
-
10
-
-
33749542216
-
Effective estimation of posterior probabilities: Explaining the accuracy of randomized decision tree approaches
-
W. Fan, E. Greengrass, J. McCloskey, P. S. Yu, and K. Drummey. Effective estimation of posterior probabilities: Explaining the accuracy of randomized decision tree approaches. In Proceedings of the Fifth IEEE International Conference on Data Mining (ICDM), pages 154-161, 2005.
-
(2005)
Proceedings of the Fifth IEEE International Conference on Data Mining (ICDM)
, pp. 154-161
-
-
Fan, W.1
Greengrass, E.2
McCloskey, J.3
Yu, P.S.4
Drummey, K.5
-
11
-
-
0013316935
-
AdaCost: Misclassification cost-sensitive boosting
-
W. Fan, S. J. Stolfo, J. Zhang, and P. K. Chan. AdaCost: misclassification cost-sensitive boosting. In Proceedings of the Sixth International Conference on Machine Learning (ICML), pages 97-105, 1999.
-
(1999)
Proceedings of the Sixth International Conference on Machine Learning (ICML)
, pp. 97-105
-
-
Fan, W.1
Stolfo, S.J.2
Zhang, J.3
Chan, P.K.4
-
13
-
-
52649144256
-
-
onlinear estimation, available at, 2000
-
J. Friedman and P. Hall. On bagging and nonlinear estimation, available at http://www-stat.stanford.edu/~jhf/, 2000.
-
J. Friedman and P. Hall. On bagging and n
-
-
-
15
-
-
27144479454
-
Learning from imbalanced data sets with boosting and data generation: The DataBoost-IM approach
-
H. Guo and H. L. Viktor. Learning from imbalanced data sets with boosting and data generation: the DataBoost-IM approach. SIGKDD Explorations Newsletter, 6(1):30-39, 2004.
-
(2004)
SIGKDD Explorations Newsletter
, vol.6
, Issue.1
, pp. 30-39
-
-
Guo, H.1
Viktor, H.L.2
-
20
-
-
33746424489
-
Asymmetric bagging and random subspace for support vector machines-based relevance feedback in image retrieval
-
D. Tao, X. Tang, X. Li, and X. Wu. Asymmetric bagging and random subspace for support vector machines-based relevance feedback in image retrieval. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(7): 1088-1099, 2006.
-
(2006)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.28
, Issue.7
, pp. 1088-1099
-
-
Tao, D.1
Tang, X.2
Li, X.3
Wu, X.4
|