메뉴 건너뛰기




Volumn 1, Issue , 2008, Pages 143-152

Roughly balanced bagging for imbalanced data

Author keywords

Bagging; Imbalanced data; Negative binomial distribution; Sampling

Indexed keywords

SAMPLING;

EID: 52649160312     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1137/1.9781611972788.13     Document Type: Conference Paper
Times cited : (32)

References (22)
  • 1
    • 27144531570 scopus 로고    scopus 로고
    • A study of the behavior of several methods for balancing machine learning training data
    • G. Batista, R. C. Prati, and M. C. Monard. A study of the behavior of several methods for balancing machine learning training data. SIGKDD Explorations Newsletter, 6(1):20-29, 2004.
    • (2004) SIGKDD Explorations Newsletter , vol.6 , Issue.1 , pp. 20-29
    • Batista, G.1    Prati, R.C.2    Monard, M.C.3
  • 2
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • L. Breiman. Bagging predictors. Machine Learning, 24(2):123-140, 1996.
    • (1996) Machine Learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 3
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • L. Breiman. Random forests. Machine Learning, 45(1):5-32, 2001.
    • (2001) Machine Learning , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 5
    • 27144549260 scopus 로고    scopus 로고
    • Editorial: Special issue on learning from imbalanced data sets
    • N. V. Chawla, N. Japkowicz, and A. Kotcz. Editorial: special issue on learning from imbalanced data sets. SIGKDD Explorations Newsletter, 6(1):1-6, 2004.
    • (2004) SIGKDD Explorations Newsletter , vol.6 , Issue.1 , pp. 1-6
    • Chawla, N.V.1    Japkowicz, N.2    Kotcz, A.3
  • 7
    • 20444392475 scopus 로고    scopus 로고
    • Using random forest to learn imbalanced data
    • Technical report, Department of Statistics, University of California, Berkeley
    • C. Chen, A. Liaw, and L. Breiman, Using random forest to learn imbalanced data. Technical report, Department of Statistics, University of California, Berkeley, 2004.
    • (2004)
    • Chen, C.1    Liaw, A.2    Breiman, L.3
  • 9
    • 0344324689 scopus 로고    scopus 로고
    • Metacost: A general method for making classifiers cost-sensitive
    • P. Domingos. Metacost: A general method for making classifiers cost-sensitive, In Knowledge Discovery and Data Mining, pages 155-164, 1999.
    • (1999) Knowledge Discovery and Data Mining , pp. 155-164
    • Domingos, P.1
  • 13
    • 52649144256 scopus 로고    scopus 로고
    • onlinear estimation, available at, 2000
    • J. Friedman and P. Hall. On bagging and nonlinear estimation, available at http://www-stat.stanford.edu/~jhf/, 2000.
    • J. Friedman and P. Hall. On bagging and n
  • 15
    • 27144479454 scopus 로고    scopus 로고
    • Learning from imbalanced data sets with boosting and data generation: The DataBoost-IM approach
    • H. Guo and H. L. Viktor. Learning from imbalanced data sets with boosting and data generation: the DataBoost-IM approach. SIGKDD Explorations Newsletter, 6(1):30-39, 2004.
    • (2004) SIGKDD Explorations Newsletter , vol.6 , Issue.1 , pp. 30-39
    • Guo, H.1    Viktor, H.L.2
  • 20
    • 33746424489 scopus 로고    scopus 로고
    • Asymmetric bagging and random subspace for support vector machines-based relevance feedback in image retrieval
    • D. Tao, X. Tang, X. Li, and X. Wu. Asymmetric bagging and random subspace for support vector machines-based relevance feedback in image retrieval. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(7): 1088-1099, 2006.
    • (2006) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.28 , Issue.7 , pp. 1088-1099
    • Tao, D.1    Tang, X.2    Li, X.3    Wu, X.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.