-
1
-
-
0038724989
-
Finding functional features in Saccharomyces genomes by phylogenetic footprinting
-
Cliften P, Sudarsanam P, Desikan A, Fulton L, Fulton B, et al. Finding functional features in Saccharomyces genomes by phylogenetic footprinting. Science 2003, 301:71-76.
-
(2003)
Science
, vol.301
, pp. 71-76
-
-
Cliften, P.1
Sudarsanam, P.2
Desikan, A.3
Fulton, L.4
Fulton, B.5
-
2
-
-
1942452749
-
Proof and evolutionary analysis of ancient genome duplication in the yeast Saccharomyces cerevisiae
-
Kellis M, Birren BW, Lander ES. Proof and evolutionary analysis of ancient genome duplication in the yeast Saccharomyces cerevisiae. Nature 2004, 428:617-624.
-
(2004)
Nature
, vol.428
, pp. 617-624
-
-
Kellis, M.1
Birren, B.W.2
Lander, E.S.3
-
3
-
-
0019865431
-
Expression of a human gene for interferon in yeast
-
Hitzeman RA, Hagie FE, Levine HL. Expression of a human gene for interferon in yeast. Nature 1981, 293:717-722.
-
(1981)
Nature
, vol.293
, pp. 717-722
-
-
Hitzeman, R.A.1
Hagie, F.E.2
Levine, H.L.3
-
4
-
-
0037020260
-
Reproducibility of oligonucleotide microarray transcriptome analyses. An interlaboratory comparison using chemostat cultures of Saccharomyces cerevisiae
-
Piper MDW, Daran-Lapujade P, Bro C, Regenberg B, Knudsen S, et al. Reproducibility of oligonucleotide microarray transcriptome analyses. An interlaboratory comparison using chemostat cultures of Saccharomyces cerevisiae. J Biol Chem2002, 277:37001-37008.
-
(2002)
J Biol Chem
, vol.277
, pp. 37001-37008
-
-
Piper, M.D.W.1
Daran-Lapujade, P.2
Bro, C.3
Regenberg, B.4
Knudsen, S.5
-
5
-
-
0034967623
-
Transcriptional control of the GAL/MEL regulon of yeast Saccharomyces cerevisiae: mechanism of galactose-mediated signal transduction
-
Bhat PJ, Murthy TVS. Transcriptional control of the GAL/MEL regulon of yeast Saccharomyces cerevisiae: mechanism of galactose-mediated signal transduction. Mol Microbiol 2001, 40:1059-1066.
-
(2001)
Mol Microbiol
, vol.40
, pp. 1059-1066
-
-
Bhat, P.J.1
Murthy, T.V.S.2
-
6
-
-
0023493883
-
A model fungal gene regulatory mechanism: the GAL genes of Saccharomyces cerevisiae
-
Johnston M. A model fungal gene regulatory mechanism: the GAL genes of Saccharomyces cerevisiae. Microbiol Rev 1987, 51:458-476.
-
(1987)
Microbiol Rev
, vol.51
, pp. 458-476
-
-
Johnston, M.1
-
7
-
-
0029058555
-
Transcriptional regulation in the yeast GAL gene family: a complex genetic network
-
Lohr D, Venkov P, Zlatanova J. Transcriptional regulation in the yeast GAL gene family: a complex genetic network. FASEB 1995, 9:777-787.
-
(1995)
FASEB
, vol.9
, pp. 777-787
-
-
Lohr, D.1
Venkov, P.2
Zlatanova, J.3
-
8
-
-
0031281363
-
Signaling activation and repression of RNA polymerase II transcription in yeast
-
Reece RJ, Platt A. Signaling activation and repression of RNA polymerase II transcription in yeast. Bioessays 1997, 19:1001-1010.
-
(1997)
Bioessays
, vol.19
, pp. 1001-1010
-
-
Reece, R.J.1
Platt, A.2
-
9
-
-
27744450664
-
A comparative analysis of the GAL genetic switch between not-so-distant cousins: Saccharomyces cerevisiae versus Kluyveromyces lactis
-
Rubio-Texeira M. A comparative analysis of the GAL genetic switch between not-so-distant cousins: Saccharomyces cerevisiae versus Kluyveromyces lactis. FEMS Yeast Res 2005, 5:1115-1128.
-
(2005)
FEMS Yeast Res
, vol.5
, pp. 1115-1128
-
-
Rubio-Texeira, M.1
-
11
-
-
0022684387
-
A GAL family of upstream activating sequences in yeast: roles in both induction and repression of transcription
-
Bram RJ, Lue NF, Kornberg RD. A GAL family of upstream activating sequences in yeast: roles in both induction and repression of transcription. EMBO J 1986, 5:603-608.
-
(1986)
EMBO J
, vol.5
, pp. 603-608
-
-
Bram, R.J.1
Lue, N.F.2
Kornberg, R.D.3
-
12
-
-
0023803638
-
Cooperative DNA binding of the yeast transcriptional activator GAL4
-
Giniger E, Ptashne M. Cooperative DNA binding of the yeast transcriptional activator GAL4. Proc Natl Acad Sci U S A 1988, 85:382-386.
-
(1988)
Proc Natl Acad Sci USA
, vol.85
, pp. 382-386
-
-
Giniger, E.1
Ptashne, M.2
-
13
-
-
0020359805
-
A GAL10-CYCl hybrid yeast promoter identifies the GAL4 regulator as an upstream site
-
Guarente L, Yocum R, Gifford P. A GAL10-CYCl hybrid yeast promoter identifies the GAL4 regulator as an upstream site. Proc Natl Acad Sci USA 1982, 79:7410-7414.
-
(1982)
Proc Natl Acad Sci USA
, vol.79
, pp. 7410-7414
-
-
Guarente, L.1
Yocum, R.2
Gifford, P.3
-
14
-
-
0027155214
-
Wild type GAL4 binds cooperatively to the GAL1-10 UAS(G) in vitro
-
Kang T, Martins T, Sadowski I. Wild type GAL4 binds cooperatively to the GAL1-10 UAS(G) in vitro. J Biol Chem 1993, 268:9629-9635.
-
(1993)
J Biol Chem
, vol.268
, pp. 9629-9635
-
-
Kang, T.1
Martins, T.2
Sadowski, I.3
-
15
-
-
0033845955
-
Molecular basis of nutrient-controlled gene expression in Saccharomyces cerevisiae
-
Reece RJ. Molecular basis of nutrient-controlled gene expression in Saccharomyces cerevisiae. Cell Mol Life Sci 2000, 57:1161-1171.
-
(2000)
Cell Mol Life Sci
, vol.57
, pp. 1161-1171
-
-
Reece, R.J.1
-
16
-
-
0023408657
-
Vivo DNA-binding properties of a yeast transcription activator protein
-
Selleck SB, Majors JE. In vivo DNA-binding properties of a yeast transcription activator protein. Mol Cell Biol 1987, 7:3260-3267.
-
(1987)
Mol Cell Biol
, vol.7
, pp. 3260-3267
-
-
Selleck, S.B.1
Majors, J.E.2
-
17
-
-
33745195271
-
Yeast Gal4: a transcriptional paradigm revisited
-
Traven A, Jelicic B, Sopta M. Yeast Gal4: a transcriptional paradigm revisited. EMBO Rep 2006, 7:496-499.
-
(2006)
EMBO Rep
, vol.7
, pp. 496-499
-
-
Traven, A.1
Jelicic, B.2
Sopta, M.3
-
18
-
-
0025328308
-
GAL4 protein: purification, association withGAL80 protein, and conserved domain structure
-
Chasman D, Kornberg RD. GAL4 protein: purification, association withGAL80 protein, and conserved domain structure.Mol Cell Biol 1990, 10:2916-2923.
-
(1990)
Mol Cell Biol
, vol.10
, pp. 2916-2923
-
-
Chasman, D.1
Kornberg, R.D.2
-
19
-
-
0023643044
-
Interaction of positive and negative regulatory proteins in the galactose regulon of yeast
-
Johnston S, Salmeron J, Dincher S. Interaction of positive and negative regulatory proteins in the galactose regulon of yeast. Cell 1987, 50:143-146.
-
(1987)
Cell
, vol.50
, pp. 143-146
-
-
Johnston, S.1
Salmeron, J.2
Dincher, S.3
-
20
-
-
0023643078
-
The carboxy-terminal 30 amino acids of GAL4 are recognized by GAL80
-
Ma J, Ptashne M. The carboxy-terminal 30 amino acids of GAL4 are recognized by GAL80. Cell 1987, 50:137-142.
-
(1987)
Cell
, vol.50
, pp. 137-142
-
-
Ma, J.1
Ptashne, M.2
-
21
-
-
0035865264
-
Gal80-Gal80 interaction on adjacent Gal4p binding sites is required for complete GAL gene repression
-
Melcher K, Xu HE. Gal80-Gal80 interaction on adjacent Gal4p binding sites is required for complete GAL gene repression. EMBO J 2001, 20:841-851.
-
(2001)
EMBO J
, vol.20
, pp. 841-851
-
-
Melcher, K.1
Xu, H.E.2
-
22
-
-
0037173045
-
Gene activation by interaction of an inhibitor with a cytoplasmic signaling protein
-
Peng G, Hopper JE. Gene activation by interaction of an inhibitor with a cytoplasmic signaling protein. Proc Natl Acad Sci U S A 2002, 99:8548-8553.
-
(2002)
Proc Natl Acad Sci USA
, vol.99
, pp. 8548-8553
-
-
Peng, G.1
Hopper, J.E.2
-
23
-
-
18844390000
-
Gal80 dimerization and the yeast GAL gene switch
-
Pilauri V, Bewley M, Diep C, Hopper J. Gal80 dimerization and the yeast GAL gene switch. Genetics 2005, 169:1903-1914.
-
(2005)
Genetics
, vol.169
, pp. 1903-1914
-
-
Pilauri, V.1
Bewley, M.2
Diep, C.3
Hopper, J.4
-
24
-
-
0032527810
-
The yeast galactose genetic switch is mediated by the formation of a Gal4p-Gal80p-Gal3p complex
-
Platt A, Reece RJ. The yeast galactose genetic switch is mediated by the formation of a Gal4p-Gal80p-Gal3p complex. EMBO J 1998, 17:4086-4091.
-
(1998)
EMBO J
, vol.17
, pp. 4086-4091
-
-
Platt, A.1
Reece, R.J.2
-
25
-
-
57649221127
-
The interaction between an acidic transcriptional activator and its inhibitor: the molecular basis of Gal4p recognition by Gal80p
-
Thoden JB, Ryan LA, Reece RJ, HoldenHM. The interaction between an acidic transcriptional activator and its inhibitor: the molecular basis of Gal4p recognition by Gal80p. J Biol Chem 2008, 283:30266-30272.
-
(2008)
J Biol Chem
, vol.283
, pp. 30266-30272
-
-
Thoden, J.B.1
Ryan, L.A.2
Reece, R.J.3
Holden, H.M.4
-
26
-
-
0029739903
-
Quantitation of putative activator-target affinities predicts transcriptional activating potentials
-
Wu Y, Reece RJ, Ptashne M. Quantitation of putative activator-target affinities predicts transcriptional activating potentials. EMBO J 1996, 15:3951-3963.
-
(1996)
EMBO J
, vol.15
, pp. 3951-3963
-
-
Wu, Y.1
Reece, R.J.2
Ptashne, M.3
-
27
-
-
0034724439
-
The insertion of two amino acids into a transcriptional inducer converts it into a galactokinase
-
Platt A, Ross HC, Hankin S, Reece RJ. The insertion of two amino acids into a transcriptional inducer converts it into a galactokinase. Proc Natl Acad Sci U S A 2000, 97:3154-3159.
-
(2000)
Proc Natl Acad Sci USA
, vol.97
, pp. 3154-3159
-
-
Platt, A.1
Ross, H.C.2
Hankin, S.3
Reece, R.J.4
-
28
-
-
0017615520
-
Purification and properties of galactokinase from Saccharomyces cerevisiae
-
Schell MA, Wilson DB. Purification and properties of galactokinase from Saccharomyces cerevisiae. J Biol Chem 1977, 252:1162-1166.
-
(1977)
J Biol Chem
, vol.252
, pp. 1162-1166
-
-
Schell, M.A.1
Wilson, D.B.2
-
29
-
-
0033625679
-
Evidence for Ga13p's cytoplasmic location and Ga180p's dual cytoplasmic-nuclear location implicates new mechanisms for controlling Ga14p activity in Saccharomyces cerevisiae
-
Peng G, Hopper JE. Evidence for Ga13p's cytoplasmic location and Ga180p's dual cytoplasmic-nuclear location implicates new mechanisms for controlling Ga14p activity in Saccharomyces cerevisiae. Mol Cell Biol 2000, 20:5140-5148.
-
(2000)
Mol Cell Biol
, vol.20
, pp. 5140-5148
-
-
Peng, G.1
Hopper, J.E.2
-
30
-
-
0031983739
-
Glucose control in Saccharomyces cerevisiae: the role of MIG1 in metabolic functions
-
Klein CJL, Olsson L, Nielsen J. Glucose control in Saccharomyces cerevisiae: the role of MIG1 in metabolic functions. Microbiology 1998, 144:13-24.
-
(1998)
Microbiology
, vol.144
, pp. 13-24
-
-
Klein, C.J.L.1
Olsson, L.2
Nielsen, J.3
-
31
-
-
1042289670
-
Vivo target of a transcriptional activator revealed by fluorescence resonance energy transfer
-
Bhaumik SR, Raha T, Aiello DP, Green MR. In vivo target of a transcriptional activator revealed by fluorescence resonance energy transfer. Genes Dev 2004, 18:333-343.
-
(2004)
Genes Dev
, vol.18
, pp. 333-343
-
-
Bhaumik, S.R.1
Raha, T.2
Aiello, D.P.3
Green, M.R.4
-
32
-
-
0026728801
-
Nondissociation of GAL4 and GAL80 in vivo after galactose induction
-
Leuther KK, Johnston SA. Nondissociation of GAL4 and GAL80 in vivo after galactose induction. Science 1992, 256:1333-1335.
-
(1992)
Science
, vol.256
, pp. 1333-1335
-
-
Leuther, K.K.1
Johnston, S.A.2
-
33
-
-
57349155872
-
Localization and interaction of the proteins constituting the GAL genetic switch in Saccharomyces cerevisiae
-
Wightman R, Bell R, Reece RJ. Localization and interaction of the proteins constituting the GAL genetic switch in Saccharomyces cerevisiae. Eukaryot Cell 2008, 7:2061-2068.
-
(2008)
Eukaryot Cell
, vol.7
, pp. 2061-2068
-
-
Wightman, R.1
Bell, R.2
Reece, R.J.3
-
34
-
-
7044239674
-
A steadystate modeling approach to validate an in vivo mechanism of the GAL regulatory network in Saccharomyces cerevisiae
-
VermaM, Bhat PJ, Bhartiya S, Venkatesh KV. A steadystate modeling approach to validate an in vivo mechanism of the GAL regulatory network in Saccharomyces cerevisiae. Eur J Biochem 2004, 271:4064-4074.
-
(2004)
Eur J Biochem
, vol.271
, pp. 4064-4074
-
-
Verma, M.1
Bhat, P.J.2
Bhartiya, S.3
Venkatesh, K.V.4
-
35
-
-
2642661483
-
The era of pathway quantification
-
Koshland DE, Jr. The era of pathway quantification. Science 1998, 280:852-853.
-
(1998)
Science
, vol.280
, pp. 852-853
-
-
Koshland Jr., D.E.1
-
36
-
-
1042299798
-
Expression of GAL genes in a mutant strain of Saccharomyces cerevisiae lacking GAL80: Quantitative model and experimental verification
-
Verma M, Bhat PJ, Venkatesh KV. Expression of GAL genes in a mutant strain of Saccharomyces cerevisiae lacking GAL80: Quantitative model and experimental verification. Biotechnol Appl Biochem 2004, 39:89-97.
-
(2004)
Biotechnol Appl Biochem
, vol.39
, pp. 89-97
-
-
Verma, M.1
Bhat, P.J.2
Venkatesh, K.V.3
-
37
-
-
4944252431
-
Autoregulation of regulatory proteins is key for dynamic operation of GAL switch in Saccharomyces cerevisiae
-
Ruhela A, Verma M, Edwards JS, Bhat PJ, Bhartiya S, et al. Autoregulation of regulatory proteins is key for dynamic operation of GAL switch in Saccharomyces cerevisiae. FEBS Lett 2004, 576:119-126.
-
(2004)
FEBS Lett
, vol.576
, pp. 119-126
-
-
Ruhela, A.1
Verma, M.2
Edwards, J.S.3
Bhat, P.J.4
Bhartiya, S.5
-
38
-
-
18744361871
-
Enhancement of cellular memory by reducing stochastic transitions
-
Acar M, Becskei A, Van Oudenaarden A. Enhancement of cellular memory by reducing stochastic transitions. Nature 2005, 435:228-232.
-
(2005)
Nature
, vol.435
, pp. 228-232
-
-
Acar, M.1
Becskei, A.2
Van Oudenaarden, A.3
-
39
-
-
33748311990
-
Dual feedback loops in the GAL regulon suppress cellular heterogeneity in yeast
-
Ramsey SA, Smith JJ, Orrell D, Marelli M, Petersen TW, et al. Dual feedback loops in the GAL regulon suppress cellular heterogeneity in yeast. Nat Genet 2006, 38:1082-1087.
-
(2006)
Nat Genet
, vol.38
, pp. 1082-1087
-
-
Ramsey, S.A.1
Smith, J.J.2
Orrell, D.3
Marelli, M.4
Petersen, T.W.5
-
40
-
-
0024371129
-
Characteristics of galactose transport in Saccharomyces cerevisiae cells and reconstituted lipid vesicles
-
Ramos J, Szkutnicka K, Cirillo VP. Characteristics of galactose transport in Saccharomyces cerevisiae cells and reconstituted lipid vesicles. J Bacteriol 1989, 171:3539-3544.
-
(1989)
J Bacteriol
, vol.171
, pp. 3539-3544
-
-
Ramos, J.1
Szkutnicka, K.2
Cirillo, V.P.3
-
41
-
-
0030891998
-
Kinetic characterization of individual hexose transporters of Saccharomyces cerevisiae and their relation to the triggering mechanisms of glucose repression
-
Reifenberger E, Boles E, Ciriacy M. Kinetic characterization of individual hexose transporters of Saccharomyces cerevisiae and their relation to the triggering mechanisms of glucose repression. Eur J Biochem 1997, 245:324-333.
-
(1997)
Eur J Biochem
, vol.245
, pp. 324-333
-
-
Reifenberger, E.1
Boles, E.2
Ciriacy, M.3
-
42
-
-
33744955253
-
The regulatory roles of the galactose permease and kinase in the induction response of the GAL network in Saccharomyces cerevisiae
-
Hawkins KM, Smolke CD. The regulatory roles of the galactose permease and kinase in the induction response of the GAL network in Saccharomyces cerevisiae. J Biol Chem 2006, 281:13485-13492.
-
(2006)
J Biol Chem
, vol.281
, pp. 13485-13492
-
-
Hawkins, K.M.1
Smolke, C.D.2
-
43
-
-
79956118962
-
-
Germany: University of Stuttgart; FOSBE Poster-71
-
Pannala V, Hazarika SJ, Bhat PJ, Bhartiya S, Venkatesh KV. A Modified Model of the GAL System in Saccharomyces cerevisiae Shows Robust Behavior in Presence of Autoregulation. Germany: University of Stuttgart; 2007, FOSBE Poster-71.
-
(2007)
A Modified Model of the GAL System in Saccharomyces cerevisiae Shows Robust Behavior in Presence of Autoregulation
-
-
Pannala, V.1
Hazarika, S.J.2
Bhat, P.J.3
Bhartiya, S.4
Venkatesh, K.V.5
-
44
-
-
0026651864
-
Overproduction of the GAL1 or GAL3 protein causes galactose-independent activation of the GAL4 protein: evidence for a new model of induction for the yeast GAL/MEL regulon
-
Bhat PJ, Hopper JE. Overproduction of the GAL1 or GAL3 protein causes galactose-independent activation of the GAL4 protein: evidence for a new model of induction for the yeast GAL/MEL regulon. Mol Cell Biol 1992, 12:2701-2707.
-
(1992)
Mol Cell Biol
, vol.12
, pp. 2701-2707
-
-
Bhat, P.J.1
Hopper, J.E.2
-
45
-
-
4143074525
-
Evolution of 'design' principles in biochemical networks
-
de Atauri P, Orrell D, Ramsey S, Bolouri H. Evolution of 'design' principles in biochemical networks. Syst Biol 2004, 1:28-40.
-
(2004)
Syst Biol
, vol.1
, pp. 28-40
-
-
de Atauri, P.1
Orrell, D.2
Ramsey, S.3
Bolouri, H.4
-
46
-
-
0034212551
-
Engineering stability in gene networks by autoregulation
-
Becskel A, Serrano L. Engineering stability in gene networks by autoregulation. Nature 2000, 405:590-593.
-
(2000)
Nature
, vol.405
, pp. 590-593
-
-
Becskel, A.1
Serrano, L.2
-
47
-
-
12744271498
-
Stochastic variation in the concentration of a repressor activates GAL genetic switch: implications in evolution of regulatory network
-
Bhat PJ, Venkatesh KV. Stochastic variation in the concentration of a repressor activates GAL genetic switch: implications in evolution of regulatory network. FEBS Lett 2005, 579:597-603.
-
(2005)
FEBS Lett
, vol.579
, pp. 597-603
-
-
Bhat, P.J.1
Venkatesh, K.V.2
-
48
-
-
28444498336
-
A data integration methodology for systems biology: experimental verification
-
Hwang D, Smith JJ, Leslie DM, Weston AD, Rust AG, et al. A data integration methodology for systems biology: experimental verification. Proc Natl Acad Sci U S A 2005, 102:17302-17307.
-
(2005)
Proc Natl Acad Sci USA
, vol.102
, pp. 17302-17307
-
-
Hwang, D.1
Smith, J.J.2
Leslie, D.M.3
Weston, A.D.4
Rust, A.G.5
-
49
-
-
0035805255
-
Integrated genomic and proteomic analyses of a systematically perturbed metabolic network
-
Ideker T, Thorsson V, Ranish JA, Christmas R, Buhler J, et al. Integrated genomic and proteomic analyses of a systematically perturbed metabolic network. Science 2001, 292:929-934.
-
(2001)
Science
, vol.292
, pp. 929-934
-
-
Ideker, T.1
Thorsson, V.2
Ranish, J.A.3
Christmas, R.4
Buhler, J.5
-
50
-
-
35649010459
-
Steady state approach to model gene regulatory networks-Simulation of microarray experiments
-
Rawool SB, Venkatesh KV. Steady state approach to model gene regulatory networks-Simulation of microarray experiments. BioSystems 2007, 90:636-655.
-
(2007)
BioSystems
, vol.90
, pp. 636-655
-
-
Rawool, S.B.1
Venkatesh, K.V.2
-
51
-
-
33746903958
-
Integrative analysis of genome-wide experiments in the context of a large high-throughput data compendium
-
Tanay A, Steinfeld I, Kupiec M, Shamir R. Integrative analysis of genome-wide experiments in the context of a large high-throughput data compendium. Mol Syst Biol [Electronic Resource] 2005, 1:1-10.
-
(2005)
Mol Syst Biol [Electronic Resource]
, vol.1
, pp. 1-10
-
-
Tanay, A.1
Steinfeld, I.2
Kupiec, M.3
Shamir, R.4
-
52
-
-
0027290523
-
Autoregulation of GAL4 transcription is essential for rapid growth of Kluyveromyces lactis on lactose and galactose
-
Czyz M, Nagiec MM, Dickson RC. Autoregulation of GAL4 transcription is essential for rapid growth of Kluyveromyces lactis on lactose and galactose. Nucleic Acids Res 1993, 21:4378-4382.
-
(1993)
Nucleic Acids Res
, vol.21
, pp. 4378-4382
-
-
Czyz, M.1
Nagiec, M.M.2
Dickson, R.C.3
-
53
-
-
33749395388
-
The galactose switch in Kluyveromyces lactis depends on nuclear competition between Gal4 and Gal1 for Gal80 binding
-
Anders A, Lilie H, Franke K, Kapp L, Stelling J, et al. The galactose switch in Kluyveromyces lactis depends on nuclear competition between Gal4 and Gal1 for Gal80 binding. J Biol Chem 2006, 281:29337-29348.
-
(2006)
J Biol Chem
, vol.281
, pp. 29337-29348
-
-
Anders, A.1
Lilie, H.2
Franke, K.3
Kapp, L.4
Stelling, J.5
-
54
-
-
0024654217
-
Glucose repression of LAC gene expression in yeast ismediated by the transcriptional activator LAC9
-
Breunig KD. Glucose repression of LAC gene expression in yeast ismediated by the transcriptional activator LAC9. Mol Gen Genet 1989, 216:422-427.
-
(1989)
Mol Gen Genet
, vol.216
, pp. 422-427
-
-
Breunig, K.D.1
|