메뉴 건너뛰기




Volumn 48, Issue 2, 2011, Pages 273-307

A coordinate gradient descent method for l1-regularized convex minimization

Author keywords

Compressed sensing; Convex optimization; Coordinate gradient descent; Image deconvolution; L1 Regularization; Linear least squares; Logistic regression; Q linear convergence

Indexed keywords

COMPRESSED SENSING; COORDINATE GRADIENT DESCENT; IMAGE DECONVOLUTION; L1- REGULARIZATION; LINEAR LEAST SQUARES; LOGISTIC REGRESSION; Q-LINEAR CONVERGENCE;

EID: 79955559521     PISSN: 09266003     EISSN: 15732894     Source Type: Journal    
DOI: 10.1007/s10589-009-9251-8     Document Type: Conference Paper
Times cited : (82)

References (35)
  • 2
    • 0004990788 scopus 로고    scopus 로고
    • Mathematical programming for data mining: Formulations and challenges
    • Bradley, P.S., Fayyad, U.M., Mangasarian, O.L.: Mathematical programming for data mining: Formulations and challenges. INFORMS J. Comput. 11, 217-238 (1999)
    • (1999) INFORMS J. Comput. , vol.11 , pp. 217-238
    • Bradley, P.S.1    Fayyad, U.M.2    Mangasarian, O.L.3
  • 3
    • 33947416035 scopus 로고    scopus 로고
    • Near-optimal signal recovery from random projections: Universal encoding strategies?
    • DOI 10.1109/TIT.2006.885507
    • Candès, E.J., Tao, T.: Nearly optimal signal recovery from random projections: Universal encoding strategies. IEEE Trans. Inf. Theory 52, 5406-5425 (2006) (Pubitemid 46445381)
    • (2006) IEEE Transactions on Information Theory , vol.52 , Issue.12 , pp. 5406-5425
    • Candes, E.J.1    Tao, T.2
  • 4
    • 31744440684 scopus 로고    scopus 로고
    • Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information
    • DOI 10.1109/TIT.2005.862083
    • Candès, E.J., Romberg, J., Tao, T.: Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52, 489-509 (2006) (Pubitemid 43174093)
    • (2006) IEEE Transactions on Information Theory , vol.52 , Issue.2 , pp. 489-509
    • Candes, E.J.1    Romberg, J.2    Tao, T.3
  • 7
    • 7044231546 scopus 로고    scopus 로고
    • An iterative thresholding algorithm for linear inverse problems with a sparsity constraint
    • DOI 10.1002/cpa.20042
    • Daubechies, I., De Friese, M., De Mol, C.: An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Commun. Pure Appl. Math. 57, 1413-1457 (2004) (Pubitemid 39427442)
    • (2004) Communications on Pure and Applied Mathematics , vol.57 , Issue.11 , pp. 1413-1457
    • Daubechies, I.1    Defrise, M.2    De Mol, C.3
  • 8
    • 33645712892 scopus 로고    scopus 로고
    • Compressed sensing
    • Donoho, D.: Compressed sensing. IEEE Trans. Inf. Theory 52, 1289-1306 (2006)
    • (2006) IEEE Trans. Inf. Theory , vol.52 , pp. 1289-1306
    • Donoho, D.1
  • 9
    • 55349134896 scopus 로고    scopus 로고
    • 1-norm minimization problems when the solution may be sparse
    • 1-norm minimization problems when the solution may be sparse. IEEE Trans. Inf. Theory 54, 4789-4812 (2008)
    • (2008) IEEE Trans. Inf. Theory , vol.54 , pp. 4789-4812
    • Donoho, D.1    Tsaig, Y.2
  • 11
    • 0142200827 scopus 로고    scopus 로고
    • An EM algorithm for wavelet-based image restoration
    • Figueiredo, M., Nowak, R.: An EM algorithm for wavelet-based image restoration. IEEE Trans. Image Process. 12, 906-916 (2003)
    • (2003) IEEE Trans. Image Process. , vol.12 , pp. 906-916
    • Figueiredo, M.1    Nowak, R.2
  • 13
    • 39449126969 scopus 로고    scopus 로고
    • Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems
    • Figueiredo, M., Nowak, R., Wright, S.J.: Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems. IEEE J. Sel. Top. Signal Process. 1, 586-598 (2007)
    • (2007) IEEE J. Sel. Top. Signal Process. , vol.1 , pp. 586-598
    • Figueiredo, M.1    Nowak, R.2    Wright, S.J.3
  • 14
    • 2942640138 scopus 로고    scopus 로고
    • On sparse representations in arbitrary redundant bases
    • Fuchs, J.-J.: On sparse representations in arbitrary redundant bases. IEEE Trans. Inf. Theory 50, 1341-1344 (2004)
    • (2004) IEEE Trans. Inf. Theory , vol.50 , pp. 1341-1344
    • Fuchs, J.-J.1
  • 15
    • 34548105186 scopus 로고    scopus 로고
    • Large-scale bayesian logistic regression for text categorization
    • DOI 10.1198/004017007000000245
    • Genkin, A., Lewis, D., Madigan, D.: Large-scale Bayesian logistic regression for text categorization. Technometrics 49, 291-304 (2007) (Pubitemid 47292487)
    • (2007) Technometrics , vol.49 , Issue.3 , pp. 291-304
    • Genkin, A.1    Lewis, D.D.2    Madigan, D.3
  • 21
    • 84876811202 scopus 로고    scopus 로고
    • RCV1: A new benchmark collection for text categorization research
    • Lewis, D.D., Yang, Y., Rose, T.G., Li, F.: RCV1: A new benchmark collection for text categorization research. J. Mach. Learn. Res. 5, 361-397 (2004)
    • (2004) J. Mach. Learn. Res. , vol.5 , pp. 361-397
    • Lewis, D.D.1    Yang, Y.2    Rose, T.G.3    Li, F.4
  • 22
    • 44649088319 scopus 로고    scopus 로고
    • Trust region Newton method for large-scale logistic regression
    • Lin, C.-J., Weng, R.C., Keerthi, S.S.: Trust region Newton method for large-scale logistic regression. J. Mach. Learn. Res. 9, 627-650 (2008)
    • (2008) J. Mach. Learn. Res. , vol.9 , pp. 627-650
    • Lin, C.-J.1    Weng, R.C.2    Keerthi, S.S.3
  • 23
    • 21344480786 scopus 로고
    • Error bounds and convergence analysis of feasible descent methods: A general approach
    • Luo, Z.-Q., Tseng, P.: Error bounds and convergence analysis of feasible descent methods: A general approach. Ann. Oper. Res. 46, 157-178 (1993)
    • (1993) Ann. Oper. Res. , vol.46 , pp. 157-178
    • Luo, Z.-Q.1    Tseng, P.2
  • 24
    • 0036161035 scopus 로고    scopus 로고
    • Large scale kernel regression via linear programming
    • DOI 10.1023/A:1012422931930
    • Mangasarian, O.L., Musicant, D.R.: Large scale kernel regression via linear programming. Mach. Learn. 46, 255-269 (2002) (Pubitemid 34129971)
    • (2002) Machine Learning , vol.46 , Issue.1-3 , pp. 255-269
    • Mangasarian, O.L.1    Musicant, D.R.2
  • 26
    • 0034215549 scopus 로고    scopus 로고
    • A new approach to variable selection in least squares problems
    • Osborne,M., Presnell, B., Turlach, B.: A new approach to variable selection in least squares problems. IMA J. Numer. Anal. 20, 389-403 (2000)
    • (2000) IMA J. Numer. Anal. , vol.20 , pp. 389-403
    • Osborne, M.1    Presnell, B.2    Turlach, B.3
  • 27
    • 34547849507 scopus 로고    scopus 로고
    • 1 regularization-path algorithm for generalized linear models
    • 1 regularization-path algorithm for generalized linear models. J. R. Stat. Soc. B 69, 659-677 (2007)
    • (2007) J. R. Stat. Soc. B , Issue.69 , pp. 659-677
    • Park, M.1    Hastie, T.2
  • 28
    • 3042574880 scopus 로고    scopus 로고
    • AMlet, RAMlet, and GAMlet: Automatic nonlinear fitting of additive models, robust and generalized, with wavelets
    • DOI 10.1198/1061860043434
    • Sardy, S., Tseng, P.: AMlet, RAMlet, and GAMlet: Automatic nonlinear fitting of additive models, robust and generalized, with wavelets. J. Comput. Graph. Stat. 13, 283-309 (2004) (Pubitemid 38845886)
    • (2004) Journal of Computational and Graphical Statistics , vol.13 , Issue.2 , pp. 283-309
    • Sardy, S.1    Tseng, P.2
  • 29
    • 70349939000 scopus 로고    scopus 로고
    • Lasso-patternsearch algorithm with application to ophthalmology and genomic data
    • Shi, W., Wahba, G., Wright, S.J., Lee, K., Klein, R., Klein, B.: Lasso-patternsearch algorithm with application to ophthalmology and genomic data. Stat. Interface 1, 137-153 (2008)
    • (2008) Stat. Interface , vol.1 , pp. 137-153
    • Shi, W.1    Wahba, G.2    Wright, S.J.3    Lee, K.4    Klein, R.5    Klein, B.6
  • 30
    • 0043265073 scopus 로고    scopus 로고
    • Wavelets and curvelets for image deconvolution: A combined approach
    • Starck, J.-L., Nguyen, M., Murtagh, F.: Wavelets and curvelets for image deconvolution: A combined approach. Signal Process. 83, 2279-2283 (2003)
    • (2003) Signal Process. , vol.83 , pp. 2279-2283
    • Starck, J.-L.1    Nguyen, M.2    Murtagh, F.3
  • 31
    • 33645712308 scopus 로고    scopus 로고
    • Just relax: Convex programming methods for identifying sparse signals in noise
    • DOI 10.1109/TIT.2005.864420
    • Tropp, J.A.: Just relax: Convex programming methods for identifying sparse signals. IEEE Trans. Inf. Theory 51, 1030-1051 (2006) (Pubitemid 46444890)
    • (2006) IEEE Transactions on Information Theory , vol.52 , Issue.3 , pp. 1030-1051
    • Tropp, J.A.1
  • 32
    • 51449098317 scopus 로고    scopus 로고
    • Extensions of compressed sensing
    • Tsaig, Y., Donoho, D.: Extensions of compressed sensing. Signal Process. 86, 533-548 (2005)
    • (2005) Signal Process. , vol.86 , pp. 533-548
    • Tsaig, Y.1    Donoho, D.2
  • 33
    • 46749146509 scopus 로고    scopus 로고
    • A coordinate gradient descent method for nonsmooth separable minimization
    • Tseng, P., Yun, S.: A coordinate gradient descent method for nonsmooth separable minimization. Math. Program. 117, 387-423 (2009)
    • (2009) Math. Program. , vol.117 , pp. 387-423
    • Tseng, P.1    Yun, S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.