메뉴 건너뛰기




Volumn 9, Issue 4, 2011, Pages

Erratum: A chaperonin subunit with unique structures is essential for folding of a specific substrate (PLoS Biology (2011) 9:4 (e1001040) DOI: 10.1371/journal.pbio.1001040);A chaperonin subunit with unique structures is essential for folding of a specific substrate

Author keywords

[No Author keywords available]

Indexed keywords

CHAPERONIN; CHAPERONIN 60 BETA1; CHAPERONIN 60 BETA2; CHAPERONIN 60 BETA3; CHAPERONIN 60 BETA4; CHLOROPHYLL; NUCLEAR PROTEIN; PROTEIN CRR7; PROTEIN NDHH; PROTEIN SUBUNIT; REDUCED NICOTINAMIDE ADENINE DINUCLEOTIDE DEHYDROGENASE; UNCLASSIFIED DRUG;

EID: 79955492385     PISSN: 15449173     EISSN: 15457885     Source Type: Journal    
DOI: 10.1371/journal.pbio.3000972     Document Type: Erratum
Times cited : (74)

References (62)
  • 1
    • 0034924812 scopus 로고    scopus 로고
    • Folding of newly translated proteins in vivo: the role of molecular chaperones
    • Frydman J, (2001) Folding of newly translated proteins in vivo: the role of molecular chaperones. Annu Rev Biochem 70: 603-647.
    • (2001) Annu Rev Biochem , vol.70 , pp. 603-647
    • Frydman, J.1
  • 2
    • 0037040541 scopus 로고    scopus 로고
    • Molecular chaperones in the cytosol: from nascent chain to folded protein
    • Hartl F. U, Hayer-Hartl M, (2002) Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295: 1852-1858.
    • (2002) Science , vol.295 , pp. 1852-1858
    • Hartl, F.U.1    Hayer-Hartl, M.2
  • 3
    • 0344738987 scopus 로고    scopus 로고
    • Chaperonin-mediated protein folding: fate of substrate polypeptide
    • Fenton W. A, Horwich A. L, (2003) Chaperonin-mediated protein folding: fate of substrate polypeptide. Q Rev Biophys 36: 229-256.
    • (2003) Q Rev Biophys , vol.36 , pp. 229-256
    • Fenton, W.A.1    Horwich, A.L.2
  • 5
    • 66849143696 scopus 로고    scopus 로고
    • Converging concepts of protein folding in vitro and in vivo
    • Hartl F. U, Hayer-Hartl M, (2009) Converging concepts of protein folding in vitro and in vivo. Nature Struct Mol Biol 16: 574-581.
    • (2009) Nature Struct Mol Biol , vol.16 , pp. 574-581
    • Hartl, F.U.1    Hayer-Hartl, M.2
  • 6
    • 0027943510 scopus 로고
    • The crystal structure of the bacterial chaperonin GroEL at 2.8 A
    • Braig K, Otwinowski Z, Hegde R, Boisvert D. C, Joachimiak A, et al. (1994) The crystal structure of the bacterial chaperonin GroEL at 2.8 A. Nature 371: 578-586.
    • (1994) Nature , vol.371 , pp. 578-586
    • Braig, K.1    Otwinowski, Z.2    Hegde, R.3    Boisvert, D.C.4    Joachimiak, A.5
  • 7
  • 8
    • 0030870719 scopus 로고    scopus 로고
    • The crystal structure of the asymmetric GroEL-GroES-(ADP)7 chaperonin complex
    • Xu Z. H, Horwich A. L, Sigler P. B, (1997) The crystal structure of the asymmetric GroEL-GroES-(ADP)7 chaperonin complex. Nature 388: 741-749.
    • (1997) Nature , vol.388 , pp. 741-749
    • Xu, Z.H.1    Horwich, A.L.2    Sigler, P.B.3
  • 9
    • 0030045870 scopus 로고    scopus 로고
    • Protein folding in the central cavity of the GroEL-GroES chaperonin complex
    • Mayhew M, Da Silva A. C. R, Martin J, Erdjument-bromage H, Tempst P, et al. (1996) Protein folding in the central cavity of the GroEL-GroES chaperonin complex. Nature 379: 420-426.
    • (1996) Nature , vol.379 , pp. 420-426
    • Mayhew, M.1    Da Silva, A.C.R.2    Martin, J.3    Erdjument-bromage, H.4    Tempst, P.5
  • 10
    • 0030056969 scopus 로고    scopus 로고
    • Characterization of the active intermediate of a GroEL-GroES-mediated protein folding reaction
    • Weissman J. S, Rye H. S, Fenton W. A, Beechem J. M, Horwich A. L, (1996) Characterization of the active intermediate of a GroEL-GroES-mediated protein folding reaction. Cell 84: 481-490.
    • (1996) Cell , vol.84 , pp. 481-490
    • Weissman, J.S.1    Rye, H.S.2    Fenton, W.A.3    Beechem, J.M.4    Horwich, A.L.5
  • 11
    • 22744447508 scopus 로고    scopus 로고
    • Proteome-wide analysis of chaperonin-dependent protein folding in Escherichia coli
    • Kerner M. J, Naylor D. J, Ishihaman Y, Maier T, Chang H. C, et al. (2005) Proteome-wide analysis of chaperonin-dependent protein folding in Escherichia coli. Cell 122: 209-220.
    • (2005) Cell , vol.122 , pp. 209-220
    • Kerner, M.J.1    Naylor, D.J.2    Ishihaman, Y.3    Maier, T.4    Chang, H.C.5
  • 12
    • 77951974784 scopus 로고    scopus 로고
    • A systematic survey of in vivo obligate chaperonin-dependent substrates
    • Fujiwara K, Ishihama Y, Nakahigashi K, Soga T, Taguchi H, (2010) A systematic survey of in vivo obligate chaperonin-dependent substrates. EMBO J 29: 1552-1564.
    • (2010) EMBO J , vol.29 , pp. 1552-1564
    • Fujiwara, K.1    Ishihama, Y.2    Nakahigashi, K.3    Soga, T.4    Taguchi, H.5
  • 13
    • 66749187185 scopus 로고    scopus 로고
    • Multiple chaperonins in bacteria-why so many?
    • Lund P. A, (2009) Multiple chaperonins in bacteria-why so many? FEMS Microbiol Rev 33: 785-800.
    • (2009) FEMS Microbiol Rev , vol.33 , pp. 785-800
    • Lund, P.A.1
  • 14
    • 0034809742 scopus 로고    scopus 로고
    • Arabidopsis thaliana type I and type II chaperonins
    • Hill J. E, Hemmingsen S. M, (2001) Arabidopsis thaliana type I and type II chaperonins. Cell Stress & Chaperones 6: 190-200.
    • (2001) Cell Stress & Chaperones , vol.6 , pp. 190-200
    • Hill, J.E.1    Hemmingsen, S.M.2
  • 15
    • 0028964648 scopus 로고
    • The Rhizobium meliloti groELc locus is required for regulation of early nod genes by the transcription activator NodD
    • Ogawa J, Long S. R, (1995) The Rhizobium meliloti groELc locus is required for regulation of early nod genes by the transcription activator NodD. Gene Dev 9: 714-729.
    • (1995) Gene Dev , vol.9 , pp. 714-729
    • Ogawa, J.1    Long, S.R.2
  • 16
    • 0032945698 scopus 로고    scopus 로고
    • GroEL chaperonins are required for the formation of a functional nitrogenase in Bradyrhizobium japonicum
    • Fischer H. M, Schneider K, Babst M, Hennecke H, (1999) GroEL chaperonins are required for the formation of a functional nitrogenase in Bradyrhizobium japonicum. Arch Microbiol 171: 279-289.
    • (1999) Arch Microbiol , vol.171 , pp. 279-289
    • Fischer, H.M.1    Schneider, K.2    Babst, M.3    Hennecke, H.4
  • 17
    • 34548043303 scopus 로고    scopus 로고
    • Homologous cpn60 genes in Rhizobium leguminosarum are not functionally equivalent
    • Gould P. S, Burgar H. R, Lund P. A, (2007) Homologous cpn60 genes in Rhizobium leguminosarum are not functionally equivalent. Cell Stress Chaperon 12: 123-131.
    • (2007) Cell Stress Chaperon , vol.12 , pp. 123-131
    • Gould, P.S.1    Burgar, H.R.2    Lund, P.A.3
  • 18
    • 28344453690 scopus 로고    scopus 로고
    • GroEL1: a dedicated chaperone involved in mycolic acid biosynthesis during biofilm formation in mycobacteria
    • Ojha A, Anand M, Bhatt A, Kremer L, Jacobs W. R, et al. (2005) GroEL1: a dedicated chaperone involved in mycolic acid biosynthesis during biofilm formation in mycobacteria. Cell 123: 861-873.
    • (2005) Cell , vol.123 , pp. 861-873
    • Ojha, A.1    Anand, M.2    Bhatt, A.3    Kremer, L.4    Jacobs, W.R.5
  • 20
    • 0025787132 scopus 로고
    • Electron microscopy of the complexes of ribulose-1,5-bisphosphate carboxylase (Rubisco) and Rubisco subunit-binding protein from pea leaves
    • Tsuprun V. L, Boekema E. J, Samsonidze T. G, Pushkin A. V, (1991) Electron microscopy of the complexes of ribulose-1,5-bisphosphate carboxylase (Rubisco) and Rubisco subunit-binding protein from pea leaves. FEBS Lett 289: 205-209.
    • (1991) FEBS Lett , vol.289 , pp. 205-209
    • Tsuprun, V.L.1    Boekema, E.J.2    Samsonidze, T.G.3    Pushkin, A.V.4
  • 21
    • 0001643571 scopus 로고
    • Purification and properties of ribulosebisphosphate carboxylase large subunit binding protein
    • Hemmingsen S. M, Ellis R. J, (1986) Purification and properties of ribulosebisphosphate carboxylase large subunit binding protein. Plant Physiol 80: 269-276.
    • (1986) Plant Physiol , vol.80 , pp. 269-276
    • Hemmingsen, S.M.1    Ellis, R.J.2
  • 22
    • 0023657522 scopus 로고
    • Dissociation of the ribulosebisphosphate-carboxylase large-subunit binding protein into dissimilar subunits
    • Musgrove J. E, Johnson R. A, Ellis R. J, (1987) Dissociation of the ribulosebisphosphate-carboxylase large-subunit binding protein into dissimilar subunits. Eur J Biochem 163: 529-534.
    • (1987) Eur J Biochem , vol.163 , pp. 529-534
    • Musgrove, J.E.1    Johnson, R.A.2    Ellis, R.J.3
  • 23
    • 0025200907 scopus 로고
    • Unique composition of plastid chaperonin-60: α and β polypeptide-encoding genes are highly divergent
    • Martel R, Cloney L. P, Pelcher L. E, Hemmingsen S. M, (1990) Unique composition of plastid chaperonin-60: α and β polypeptide-encoding genes are highly divergent. Gene 94: 181-187.
    • (1990) Gene , vol.94 , pp. 181-187
    • Martel, R.1    Cloney, L.P.2    Pelcher, L.E.3    Hemmingsen, S.M.4
  • 24
    • 0034697297 scopus 로고    scopus 로고
    • Reconstitution of higher plant chloroplast chaperonin 60 tetradecamers active in protein folding
    • Dickson R, Weiss C, Howard R. J, Alldrick S. P, Ellis R. J, et al. (2000) Reconstitution of higher plant chloroplast chaperonin 60 tetradecamers active in protein folding. J Biol Chem 275: 11829-11835.
    • (2000) J Biol Chem , vol.275 , pp. 11829-11835
    • Dickson, R.1    Weiss, C.2    Howard, R.J.3    Alldrick, S.P.4    Ellis, R.J.5
  • 25
    • 0033590077 scopus 로고    scopus 로고
    • Chloroplast chaperonins: evidence for heterogeneous assembly of α and β Cpn60 polypeptides into a chaperonin oligomer
    • Nishio K, Hirohashi T, Nakai M, (1999) Chloroplast chaperonins: evidence for heterogeneous assembly of α and β Cpn60 polypeptides into a chaperonin oligomer. Biochem Biophys Res Commun 266: 584-587.
    • (1999) Biochem Biophys Res Commun , vol.266 , pp. 584-587
    • Nishio, K.1    Hirohashi, T.2    Nakai, M.3
  • 28
    • 0034979913 scopus 로고    scopus 로고
    • The Arabidopsis embryo mutant schlepperless has a defect in the Chaperonin-60α gene
    • Apuya N. R, Yadegari R, Fischer R. L, Harada J. J, Zimmerman J. L, et al. (2001) The Arabidopsis embryo mutant schlepperless has a defect in the Chaperonin-60α gene. Plant Physiol 126: 717-730.
    • (2001) Plant Physiol , vol.126 , pp. 717-730
    • Apuya, N.R.1    Yadegari, R.2    Fischer, R.L.3    Harada, J.J.4    Zimmerman, J.L.5
  • 29
    • 65249090789 scopus 로고    scopus 로고
    • Plastid chaperonin proteins Cpn60α and Cpn60 β are required for plastid division in Arabidopsis thaliana
    • Suzuki K, Nakanishi H, Bower J, Yoder D. W, Osteryoung K. W, et al. (2009) Plastid chaperonin proteins Cpn60α and Cpn60 β are required for plastid division in Arabidopsis thaliana. BMC Plant Biol 9: 38.
    • (2009) BMC Plant Biol , vol.9 , pp. 38
    • Suzuki, K.1    Nakanishi, H.2    Bower, J.3    Yoder, D.W.4    Osteryoung, K.W.5
  • 30
    • 0033540034 scopus 로고    scopus 로고
    • Eukaryotic type II chaperonin CCT interacts with actin through specific subunits
    • Llorca O, McCormack E. A, Hynes G, Grantham J, Cordell J, et al. (1999) Eukaryotic type II chaperonin CCT interacts with actin through specific subunits. Nature 402: 693-696.
    • (1999) Nature , vol.402 , pp. 693-696
    • Llorca, O.1    McCormack, E.A.2    Hynes, G.3    Grantham, J.4    Cordell, J.5
  • 31
    • 77955282609 scopus 로고    scopus 로고
    • Equivalent mutations in the eight subunits of the chaperonin CCT produce dramatically different cellular and gene expression phenotypes
    • Amit M, Weisberg S. J, Nadler-Holly M, McCormack E. A, Feldmesser E, et al. (2010) Equivalent mutations in the eight subunits of the chaperonin CCT produce dramatically different cellular and gene expression phenotypes. J Mol Biol 401: 532-543.
    • (2010) J Mol Biol , vol.401 , pp. 532-543
    • Amit, M.1    Weisberg, S.J.2    Nadler-Holly, M.3    McCormack, E.A.4    Feldmesser, E.5
  • 32
    • 34250847628 scopus 로고    scopus 로고
    • Cyclic electron transport around photosystem I: genetic approaches
    • Shikanai T, (2007) Cyclic electron transport around photosystem I: genetic approaches. Annu Rev Plant Biol 58: 199-217.
    • (2007) Annu Rev Plant Biol , vol.58 , pp. 199-217
    • Shikanai, T.1
  • 33
    • 0032483030 scopus 로고    scopus 로고
    • Directed disruption of the tobacco ndhB gene impairs cyclic electron flow around photosystem I
    • Shikanai T, Endo T, Hasimoto T, Yamada Y, Asada K, et al. (1998) Directed disruption of the tobacco ndhB gene impairs cyclic electron flow around photosystem I. Proc Natl Acad Sci U S A 95: 9705-9709.
    • (1998) Proc Natl Acad Sci U S A , vol.95 , pp. 9705-9709
    • Shikanai, T.1    Endo, T.2    Hasimoto, T.3    Yamada, Y.4    Asada, K.5
  • 34
    • 71249105141 scopus 로고    scopus 로고
    • Towards characterization of the chloroplast NAD(P)H dehydrogenase complex
    • Suorsa M, Sirpiö S, Aro E-M, (2009) Towards characterization of the chloroplast NAD(P)H dehydrogenase complex. Mol Plant 2: 1127-1140.
    • (2009) Mol Plant , vol.2 , pp. 1127-1140
    • Suorsa, M.1    Sirpiö, S.2    Aro, E.-M.3
  • 35
    • 79958082745 scopus 로고    scopus 로고
    • Structure and biogenesis of the chloroplast NAD(P)H dehydrogenase complex
    • doi:10.1016/j.bbabio.2010.10.015
    • Peng L, Yamamoto H, Shikanai T, (2010) Structure and biogenesis of the chloroplast NAD(P)H dehydrogenase complex. Biochim Biophys Acta doi:10.1016/j.bbabio.2010.10.015.
    • (2010) Biochim Biophys Acta
    • Peng, L.1    Yamamoto, H.2    Shikanai, T.3
  • 36
    • 12144289987 scopus 로고    scopus 로고
    • A collection of 11,800 single-copy Ds transposon insertion lines in Arabidopsis
    • Kuromori T, Hirayama T, Kiyosue Y, Takabe H, Mizukado S, et al. (2004) A collection of 11,800 single-copy Ds transposon insertion lines in Arabidopsis. Plant J 37: 897-905.
    • (2004) Plant J , vol.37 , pp. 897-905
    • Kuromori, T.1    Hirayama, T.2    Kiyosue, Y.3    Takabe, H.4    Mizukado, S.5
  • 37
    • 34249938871 scopus 로고    scopus 로고
    • Conserved domain structure of pentatricopeptide repeat proteins involved in chloroplast RNA editing
    • Okuda K, Myouga F, Motohashi R, Shinozaki K, Shikanai T, (2007) Conserved domain structure of pentatricopeptide repeat proteins involved in chloroplast RNA editing. Proc Natl Acad Sci U S A 104: 8178-8183.
    • (2007) Proc Natl Acad Sci U S A , vol.104 , pp. 8178-8183
    • Okuda, K.1    Myouga, F.2    Motohashi, R.3    Shinozaki, K.4    Shikanai, T.5
  • 38
    • 58049211385 scopus 로고    scopus 로고
    • The chloroplast NAD(P)H dehydrogenase complex interacts with photosystem I in Arabidopsis
    • Peng L, Shimizu H, Shikanai T, (2008) The chloroplast NAD(P)H dehydrogenase complex interacts with photosystem I in Arabidopsis. J Biol Chem 83: 34873-34879.
    • (2008) J Biol Chem , vol.83 , pp. 34873-34879
    • Peng, L.1    Shimizu, H.2    Shikanai, T.3
  • 39
    • 73249123281 scopus 로고    scopus 로고
    • Efficient operation of NAD(P)H dehydrogenase requires supercomplex formation with photosystem I via minor LHCI in Arabidopsis
    • Peng L, Fukao Y, Fujiwara M, Takami T, Shikanai T, (2009) Efficient operation of NAD(P)H dehydrogenase requires supercomplex formation with photosystem I via minor LHCI in Arabidopsis. Plant Cell 21: 3623-3640.
    • (2009) Plant Cell , vol.21 , pp. 3623-3640
    • Peng, L.1    Fukao, Y.2    Fujiwara, M.3    Takami, T.4    Shikanai, T.5
  • 40
    • 26844559000 scopus 로고    scopus 로고
    • Exponentially modified protein abundance index (emPAI) for estimation of absolute protein amount in proteomics by the number of sequenced peptides per protein
    • Ishihama Y, Oda Y, Tabata T, Sato T, Nagasu T, et al. (2005) Exponentially modified protein abundance index (emPAI) for estimation of absolute protein amount in proteomics by the number of sequenced peptides per protein. Mol Cell Proteomics 4: 1265-1272.
    • (2005) Mol Cell Proteomics , vol.4 , pp. 1265-1272
    • Ishihama, Y.1    Oda, Y.2    Tabata, T.3    Sato, T.4    Nagasu, T.5
  • 41
    • 77954436604 scopus 로고    scopus 로고
    • Chloroplast stromal proteins, CRR6 and CRR7, are required for assembly of the NAD(P)H dehydrogenase subcomplex A in Arabidopsis
    • Peng L, Cai W, Shikanai T, (2010) Chloroplast stromal proteins, CRR6 and CRR7, are required for assembly of the NAD(P)H dehydrogenase subcomplex A in Arabidopsis. Plant J 63: 203-211.
    • (2010) Plant J , vol.63 , pp. 203-211
    • Peng, L.1    Cai, W.2    Shikanai, T.3
  • 43
    • 33646897305 scopus 로고    scopus 로고
    • Structural features of the GroEL-GroES nano-cage required for rapid folding of encapsulated protein
    • Tang Y. C, Chang H. C, Roeben A, Wischnewski D, Wischnewski N, et al. (2006) Structural features of the GroEL-GroES nano-cage required for rapid folding of encapsulated protein. Cell 125: 903-914.
    • (2006) Cell , vol.125 , pp. 903-914
    • Tang, Y.C.1    Chang, H.C.2    Roeben, A.3    Wischnewski, D.4    Wischnewski, N.5
  • 44
    • 0034064511 scopus 로고    scopus 로고
    • Conservation among HSP60 sequences in relation to structure, function, and evolution
    • Brocchieri L, Karlin S, (2000) Conservation among HSP60 sequences in relation to structure, function, and evolution. Prot Sci 9: 476-486.
    • (2000) Prot Sci , vol.9 , pp. 476-486
    • Brocchieri, L.1    Karlin, S.2
  • 45
    • 0032902669 scopus 로고    scopus 로고
    • Ancient gene duplication and differential gene flow in plastid lineages: the GroEL/Cpn60 example
    • Wastl J, Fraunholz M, Zauner S, Douglas S, Maier U. G, (1999) Ancient gene duplication and differential gene flow in plastid lineages: the GroEL/Cpn60 example. J Mol Evol 48: 112-117.
    • (1999) J Mol Evol , vol.48 , pp. 112-117
    • Wastl, J.1    Fraunholz, M.2    Zauner, S.3    Douglas, S.4    Maier, U.G.5
  • 46
    • 32144432437 scopus 로고    scopus 로고
    • The SWISS-MODEL workspace: a Web-based environment for protein structure homology modelling
    • Arnold K, Bordoli L, Kopp J, Schwede T, (2006) The SWISS-MODEL workspace: a Web-based environment for protein structure homology modelling. Bioinformatics 22: 195-201.
    • (2006) Bioinformatics , vol.22 , pp. 195-201
    • Arnold, K.1    Bordoli, L.2    Kopp, J.3    Schwede, T.4
  • 48
    • 34248349952 scopus 로고    scopus 로고
    • Perturbed ATPase activity and not "close confinement" of substrate in the cis cavity affects rates of folding by tail-multiplied GroEL
    • Farr G. W, Fenton W. A, Horwich A. L, (2007) Perturbed ATPase activity and not "close confinement" of substrate in the cis cavity affects rates of folding by tail-multiplied GroEL. Proc Natl Acad Sci U S A 104: 5342-5347.
    • (2007) Proc Natl Acad Sci U S A , vol.104 , pp. 5342-5347
    • Farr, G.W.1    Fenton, W.A.2    Horwich, A.L.3
  • 49
    • 53049084967 scopus 로고    scopus 로고
    • Effect of the C-terminal truncation on the functional cycle of chaperonin GroEL: implication that the C-terminal region facilitates the transition from the folding-arrested to the folding-competent state
    • Suzuki M, Ueno T, Iizuka R, Miura T, Zako T, et al. (2008) Effect of the C-terminal truncation on the functional cycle of chaperonin GroEL: implication that the C-terminal region facilitates the transition from the folding-arrested to the folding-competent state. J Biol Chem 283: 23931-23939.
    • (2008) J Biol Chem , vol.283 , pp. 23931-23939
    • Suzuki, M.1    Ueno, T.2    Iizuka, R.3    Miura, T.4    Zako, T.5
  • 50
    • 43749113194 scopus 로고    scopus 로고
    • Hydrophilic residues 526KNDAAD531 in the flexible C-terminal region of the chaperonin GroEL are critical for substrate protein folding within the central cavity
    • Machida K, Kono-Okada A, Hongo K, Mizobata T, Kawata Y, (2008) Hydrophilic residues 526KNDAAD531 in the flexible C-terminal region of the chaperonin GroEL are critical for substrate protein folding within the central cavity. J Biol Chem 283: 6886-6896.
    • (2008) J Biol Chem , vol.283 , pp. 6886-6896
    • Machida, K.1    Kono-Okada, A.2    Hongo, K.3    Mizobata, T.4    Kawata, Y.5
  • 51
    • 0027525938 scopus 로고
    • The strongly conserved carboxyl-terminus glycine-methionine motif of Escherichia coli GroEL chaperonin is dispensable
    • McLennan N. F, Girshovich A. S, Lissin N. M, Charters Y, Masters M, (1993) The strongly conserved carboxyl-terminus glycine-methionine motif of Escherichia coli GroEL chaperonin is dispensable. Mol Microbiol 7: 49-58.
    • (1993) Mol Microbiol , vol.7 , pp. 49-58
    • McLennan, N.F.1    Girshovich, A.S.2    Lissin, N.M.3    Charters, Y.4    Masters, M.5
  • 52
    • 0028062818 scopus 로고
    • The tail of a chaperonin: the C-terminal region of Escherichia coli GroEL protein
    • McLennan N. F, McAteer S, Masters M, (1994) The tail of a chaperonin: the C-terminal region of Escherichia coli GroEL protein. Mol Microbiol 14: 309-321.
    • (1994) Mol Microbiol , vol.14 , pp. 309-321
    • McLennan, N.F.1    McAteer, S.2    Masters, M.3
  • 53
    • 0037184939 scopus 로고    scopus 로고
    • Directed evolution of substrate-optimized GroEL/S chaperonins
    • Wang J. D, Herman C, Tipton K. A, Gross C. A, Weissman J. S, (2002) Directed evolution of substrate-optimized GroEL/S chaperonins. Cell 111: 1027-1039.
    • (2002) Cell , vol.111 , pp. 1027-1039
    • Wang, J.D.1    Herman, C.2    Tipton, K.A.3    Gross, C.A.4    Weissman, J.S.5
  • 54
    • 78650903812 scopus 로고    scopus 로고
    • Structural and functional conservation of mycobacterium tuberculosis GroEL paralogs suggests that GroEL1 is a chaperonin
    • Sielaff B, Lee K. S, Tsai F. T, (2011) Structural and functional conservation of mycobacterium tuberculosis GroEL paralogs suggests that GroEL1 is a chaperonin. J Mol Biol 405: 831-839.
    • (2011) J Mol Biol , vol.405 , pp. 831-839
    • Sielaff, B.1    Lee, K.S.2    Tsai, F.T.3
  • 55
    • 0345393082 scopus 로고    scopus 로고
    • A nucleus-encoded factor, CRR2, is essential for the expression of chloroplast ndhB in Arabidopsis
    • Hashimoto M, Endo T, Peltier G, Tasaka M, Shikanai T, (2003) A nucleus-encoded factor, CRR2, is essential for the expression of chloroplast ndhB in Arabidopsis. Plant J 36: 541-549.
    • (2003) Plant J , vol.36 , pp. 541-549
    • Hashimoto, M.1    Endo, T.2    Peltier, G.3    Tasaka, M.4    Shikanai, T.5
  • 56
    • 0031574072 scopus 로고    scopus 로고
    • The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools
    • Thompson J. D, Gibson T. J, Plewniak F, Jeanmougin F, Higgins D. G, (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25: 4876-4882.
    • (1997) Nucleic Acids Res , vol.25 , pp. 4876-4882
    • Thompson, J.D.1    Gibson, T.J.2    Plewniak, F.3    Jeanmougin, F.4    Higgins, D.G.5
  • 57
    • 0242578620 scopus 로고    scopus 로고
    • A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood
    • Guindon S, Gascuel O, (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52: 696-704.
    • (2003) Syst Biol , vol.52 , pp. 696-704
    • Guindon, S.1    Gascuel, O.2
  • 58
    • 0031773680 scopus 로고    scopus 로고
    • MODELTEST: testing the model of DNA substitution
    • Posada D, Crandall K. A, (1998) MODELTEST: testing the model of DNA substitution. Bioinformatics 14: 817-818.
    • (1998) Bioinformatics , vol.14 , pp. 817-818
    • Posada, D.1    Crandall, K.A.2
  • 59
    • 0034849408 scopus 로고    scopus 로고
    • MRBAYES: Bayesian inference of phylogenetic trees
    • Huelsenbeck J. P, Ronquist F, (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17: 754-755.
    • (2001) Bioinformatics , vol.17 , pp. 754-755
    • Huelsenbeck, J.P.1    Ronquist, F.2
  • 60
    • 32144432437 scopus 로고    scopus 로고
    • The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling
    • Arnold K, Bordoli L, Kopp J, Schwede T, (2006) The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22: 195-201.
    • (2006) Bioinformatics , vol.22 , pp. 195-201
    • Arnold, K.1    Bordoli, L.2    Kopp, J.3    Schwede, T.4
  • 61
    • 0028113299 scopus 로고
    • Residues in chaperonin GroEL required for polypeptide binding and release
    • Fenton W. A, Kashi Y, Furtak K, Horwich A. L, (1994) Residues in chaperonin GroEL required for polypeptide binding and release. Nature 371: 614-619.
    • (1994) Nature , vol.371 , pp. 614-619
    • Fenton, W.A.1    Kashi, Y.2    Furtak, K.3    Horwich, A.L.4
  • 62
    • 0030966765 scopus 로고    scopus 로고
    • A structural model for GroEL-polypeptide recognition
    • Buckle A. M, Zahn R, Fersht A. R, (1997) A structural model for GroEL-polypeptide recognition. Proc Natl Acad Sci U S A 94: 3571-3575.
    • (1997) Proc Natl Acad Sci U S A , vol.94 , pp. 3571-3575
    • Buckle, A.M.1    Zahn, R.2    Fersht, A.R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.