-
1
-
-
0034924812
-
Folding of newly translated proteins in vivo: the role of molecular chaperones
-
Frydman J, (2001) Folding of newly translated proteins in vivo: the role of molecular chaperones. Annu Rev Biochem 70: 603-647.
-
(2001)
Annu Rev Biochem
, vol.70
, pp. 603-647
-
-
Frydman, J.1
-
2
-
-
0037040541
-
Molecular chaperones in the cytosol: from nascent chain to folded protein
-
Hartl F. U, Hayer-Hartl M, (2002) Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295: 1852-1858.
-
(2002)
Science
, vol.295
, pp. 1852-1858
-
-
Hartl, F.U.1
Hayer-Hartl, M.2
-
3
-
-
0344738987
-
Chaperonin-mediated protein folding: fate of substrate polypeptide
-
Fenton W. A, Horwich A. L, (2003) Chaperonin-mediated protein folding: fate of substrate polypeptide. Q Rev Biophys 36: 229-256.
-
(2003)
Q Rev Biophys
, vol.36
, pp. 229-256
-
-
Fenton, W.A.1
Horwich, A.L.2
-
4
-
-
36949033246
-
Two families of chaperonin: physiology and mechanism
-
Horwich A. L, Fenton W. A, Chapman E, Farr G. W, (2007) Two families of chaperonin: physiology and mechanism. Annu Rev Cell Dev Biol 23: 115-145.
-
(2007)
Annu Rev Cell Dev Biol
, vol.23
, pp. 115-145
-
-
Horwich, A.L.1
Fenton, W.A.2
Chapman, E.3
Farr, G.W.4
-
5
-
-
66849143696
-
Converging concepts of protein folding in vitro and in vivo
-
Hartl F. U, Hayer-Hartl M, (2009) Converging concepts of protein folding in vitro and in vivo. Nature Struct Mol Biol 16: 574-581.
-
(2009)
Nature Struct Mol Biol
, vol.16
, pp. 574-581
-
-
Hartl, F.U.1
Hayer-Hartl, M.2
-
6
-
-
0027943510
-
The crystal structure of the bacterial chaperonin GroEL at 2.8 A
-
Braig K, Otwinowski Z, Hegde R, Boisvert D. C, Joachimiak A, et al. (1994) The crystal structure of the bacterial chaperonin GroEL at 2.8 A. Nature 371: 578-586.
-
(1994)
Nature
, vol.371
, pp. 578-586
-
-
Braig, K.1
Otwinowski, Z.2
Hegde, R.3
Boisvert, D.C.4
Joachimiak, A.5
-
8
-
-
0030870719
-
The crystal structure of the asymmetric GroEL-GroES-(ADP)7 chaperonin complex
-
Xu Z. H, Horwich A. L, Sigler P. B, (1997) The crystal structure of the asymmetric GroEL-GroES-(ADP)7 chaperonin complex. Nature 388: 741-749.
-
(1997)
Nature
, vol.388
, pp. 741-749
-
-
Xu, Z.H.1
Horwich, A.L.2
Sigler, P.B.3
-
9
-
-
0030045870
-
Protein folding in the central cavity of the GroEL-GroES chaperonin complex
-
Mayhew M, Da Silva A. C. R, Martin J, Erdjument-bromage H, Tempst P, et al. (1996) Protein folding in the central cavity of the GroEL-GroES chaperonin complex. Nature 379: 420-426.
-
(1996)
Nature
, vol.379
, pp. 420-426
-
-
Mayhew, M.1
Da Silva, A.C.R.2
Martin, J.3
Erdjument-bromage, H.4
Tempst, P.5
-
10
-
-
0030056969
-
Characterization of the active intermediate of a GroEL-GroES-mediated protein folding reaction
-
Weissman J. S, Rye H. S, Fenton W. A, Beechem J. M, Horwich A. L, (1996) Characterization of the active intermediate of a GroEL-GroES-mediated protein folding reaction. Cell 84: 481-490.
-
(1996)
Cell
, vol.84
, pp. 481-490
-
-
Weissman, J.S.1
Rye, H.S.2
Fenton, W.A.3
Beechem, J.M.4
Horwich, A.L.5
-
11
-
-
22744447508
-
Proteome-wide analysis of chaperonin-dependent protein folding in Escherichia coli
-
Kerner M. J, Naylor D. J, Ishihaman Y, Maier T, Chang H. C, et al. (2005) Proteome-wide analysis of chaperonin-dependent protein folding in Escherichia coli. Cell 122: 209-220.
-
(2005)
Cell
, vol.122
, pp. 209-220
-
-
Kerner, M.J.1
Naylor, D.J.2
Ishihaman, Y.3
Maier, T.4
Chang, H.C.5
-
12
-
-
77951974784
-
A systematic survey of in vivo obligate chaperonin-dependent substrates
-
Fujiwara K, Ishihama Y, Nakahigashi K, Soga T, Taguchi H, (2010) A systematic survey of in vivo obligate chaperonin-dependent substrates. EMBO J 29: 1552-1564.
-
(2010)
EMBO J
, vol.29
, pp. 1552-1564
-
-
Fujiwara, K.1
Ishihama, Y.2
Nakahigashi, K.3
Soga, T.4
Taguchi, H.5
-
13
-
-
66749187185
-
Multiple chaperonins in bacteria-why so many?
-
Lund P. A, (2009) Multiple chaperonins in bacteria-why so many? FEMS Microbiol Rev 33: 785-800.
-
(2009)
FEMS Microbiol Rev
, vol.33
, pp. 785-800
-
-
Lund, P.A.1
-
14
-
-
0034809742
-
Arabidopsis thaliana type I and type II chaperonins
-
Hill J. E, Hemmingsen S. M, (2001) Arabidopsis thaliana type I and type II chaperonins. Cell Stress & Chaperones 6: 190-200.
-
(2001)
Cell Stress & Chaperones
, vol.6
, pp. 190-200
-
-
Hill, J.E.1
Hemmingsen, S.M.2
-
15
-
-
0028964648
-
The Rhizobium meliloti groELc locus is required for regulation of early nod genes by the transcription activator NodD
-
Ogawa J, Long S. R, (1995) The Rhizobium meliloti groELc locus is required for regulation of early nod genes by the transcription activator NodD. Gene Dev 9: 714-729.
-
(1995)
Gene Dev
, vol.9
, pp. 714-729
-
-
Ogawa, J.1
Long, S.R.2
-
16
-
-
0032945698
-
GroEL chaperonins are required for the formation of a functional nitrogenase in Bradyrhizobium japonicum
-
Fischer H. M, Schneider K, Babst M, Hennecke H, (1999) GroEL chaperonins are required for the formation of a functional nitrogenase in Bradyrhizobium japonicum. Arch Microbiol 171: 279-289.
-
(1999)
Arch Microbiol
, vol.171
, pp. 279-289
-
-
Fischer, H.M.1
Schneider, K.2
Babst, M.3
Hennecke, H.4
-
17
-
-
34548043303
-
Homologous cpn60 genes in Rhizobium leguminosarum are not functionally equivalent
-
Gould P. S, Burgar H. R, Lund P. A, (2007) Homologous cpn60 genes in Rhizobium leguminosarum are not functionally equivalent. Cell Stress Chaperon 12: 123-131.
-
(2007)
Cell Stress Chaperon
, vol.12
, pp. 123-131
-
-
Gould, P.S.1
Burgar, H.R.2
Lund, P.A.3
-
18
-
-
28344453690
-
GroEL1: a dedicated chaperone involved in mycolic acid biosynthesis during biofilm formation in mycobacteria
-
Ojha A, Anand M, Bhatt A, Kremer L, Jacobs W. R, et al. (2005) GroEL1: a dedicated chaperone involved in mycolic acid biosynthesis during biofilm formation in mycobacteria. Cell 123: 861-873.
-
(2005)
Cell
, vol.123
, pp. 861-873
-
-
Ojha, A.1
Anand, M.2
Bhatt, A.3
Kremer, L.4
Jacobs, W.R.5
-
19
-
-
0019915089
-
High molecular weight pea leaf protein similar to the groE protein of Escherichia coli
-
Pushkin A. V, Tsuprun V. L, Solovjeva N. A, Shubin V. V, Evstigneeva Z. G, et al. (1982) High molecular weight pea leaf protein similar to the groE protein of Escherichia coli. Biochim Biophys Acta 704: 379-384.
-
(1982)
Biochim Biophys Acta
, vol.704
, pp. 379-384
-
-
Pushkin, A.V.1
Tsuprun, V.L.2
Solovjeva, N.A.3
Shubin, V.V.4
Evstigneeva, Z.G.5
-
20
-
-
0025787132
-
Electron microscopy of the complexes of ribulose-1,5-bisphosphate carboxylase (Rubisco) and Rubisco subunit-binding protein from pea leaves
-
Tsuprun V. L, Boekema E. J, Samsonidze T. G, Pushkin A. V, (1991) Electron microscopy of the complexes of ribulose-1,5-bisphosphate carboxylase (Rubisco) and Rubisco subunit-binding protein from pea leaves. FEBS Lett 289: 205-209.
-
(1991)
FEBS Lett
, vol.289
, pp. 205-209
-
-
Tsuprun, V.L.1
Boekema, E.J.2
Samsonidze, T.G.3
Pushkin, A.V.4
-
21
-
-
0001643571
-
Purification and properties of ribulosebisphosphate carboxylase large subunit binding protein
-
Hemmingsen S. M, Ellis R. J, (1986) Purification and properties of ribulosebisphosphate carboxylase large subunit binding protein. Plant Physiol 80: 269-276.
-
(1986)
Plant Physiol
, vol.80
, pp. 269-276
-
-
Hemmingsen, S.M.1
Ellis, R.J.2
-
22
-
-
0023657522
-
Dissociation of the ribulosebisphosphate-carboxylase large-subunit binding protein into dissimilar subunits
-
Musgrove J. E, Johnson R. A, Ellis R. J, (1987) Dissociation of the ribulosebisphosphate-carboxylase large-subunit binding protein into dissimilar subunits. Eur J Biochem 163: 529-534.
-
(1987)
Eur J Biochem
, vol.163
, pp. 529-534
-
-
Musgrove, J.E.1
Johnson, R.A.2
Ellis, R.J.3
-
23
-
-
0025200907
-
Unique composition of plastid chaperonin-60: α and β polypeptide-encoding genes are highly divergent
-
Martel R, Cloney L. P, Pelcher L. E, Hemmingsen S. M, (1990) Unique composition of plastid chaperonin-60: α and β polypeptide-encoding genes are highly divergent. Gene 94: 181-187.
-
(1990)
Gene
, vol.94
, pp. 181-187
-
-
Martel, R.1
Cloney, L.P.2
Pelcher, L.E.3
Hemmingsen, S.M.4
-
24
-
-
0034697297
-
Reconstitution of higher plant chloroplast chaperonin 60 tetradecamers active in protein folding
-
Dickson R, Weiss C, Howard R. J, Alldrick S. P, Ellis R. J, et al. (2000) Reconstitution of higher plant chloroplast chaperonin 60 tetradecamers active in protein folding. J Biol Chem 275: 11829-11835.
-
(2000)
J Biol Chem
, vol.275
, pp. 11829-11835
-
-
Dickson, R.1
Weiss, C.2
Howard, R.J.3
Alldrick, S.P.4
Ellis, R.J.5
-
25
-
-
0033590077
-
Chloroplast chaperonins: evidence for heterogeneous assembly of α and β Cpn60 polypeptides into a chaperonin oligomer
-
Nishio K, Hirohashi T, Nakai M, (1999) Chloroplast chaperonins: evidence for heterogeneous assembly of α and β Cpn60 polypeptides into a chaperonin oligomer. Biochem Biophys Res Commun 266: 584-587.
-
(1999)
Biochem Biophys Res Commun
, vol.266
, pp. 584-587
-
-
Nishio, K.1
Hirohashi, T.2
Nakai, M.3
-
26
-
-
58549113565
-
Cpn20: Siamese twins of the chaperonin world
-
Weiss C, Bonshtien A, Farchi-Pisanty O, Vitlin A, Azem A, (2009) Cpn20: Siamese twins of the chaperonin world. Plant Mol Biol 69: 227-238.
-
(2009)
Plant Mol Biol
, vol.69
, pp. 227-238
-
-
Weiss, C.1
Bonshtien, A.2
Farchi-Pisanty, O.3
Vitlin, A.4
Azem, A.5
-
27
-
-
31644438575
-
The oligomeric stromal proteome of Arabidopsis thaliana chloroplasts
-
Peltier J. B, Emanuelsson O, Kalume D. E, Ytterberg J, Friso G, et al. (2006) The oligomeric stromal proteome of Arabidopsis thaliana chloroplasts. Mol Cell Proteomics 5: 114-133.
-
(2006)
Mol Cell Proteomics
, vol.5
, pp. 114-133
-
-
Peltier, J.B.1
Emanuelsson, O.2
Kalume, D.E.3
Ytterberg, J.4
Friso, G.5
-
28
-
-
0034979913
-
The Arabidopsis embryo mutant schlepperless has a defect in the Chaperonin-60α gene
-
Apuya N. R, Yadegari R, Fischer R. L, Harada J. J, Zimmerman J. L, et al. (2001) The Arabidopsis embryo mutant schlepperless has a defect in the Chaperonin-60α gene. Plant Physiol 126: 717-730.
-
(2001)
Plant Physiol
, vol.126
, pp. 717-730
-
-
Apuya, N.R.1
Yadegari, R.2
Fischer, R.L.3
Harada, J.J.4
Zimmerman, J.L.5
-
29
-
-
65249090789
-
Plastid chaperonin proteins Cpn60α and Cpn60 β are required for plastid division in Arabidopsis thaliana
-
Suzuki K, Nakanishi H, Bower J, Yoder D. W, Osteryoung K. W, et al. (2009) Plastid chaperonin proteins Cpn60α and Cpn60 β are required for plastid division in Arabidopsis thaliana. BMC Plant Biol 9: 38.
-
(2009)
BMC Plant Biol
, vol.9
, pp. 38
-
-
Suzuki, K.1
Nakanishi, H.2
Bower, J.3
Yoder, D.W.4
Osteryoung, K.W.5
-
30
-
-
0033540034
-
Eukaryotic type II chaperonin CCT interacts with actin through specific subunits
-
Llorca O, McCormack E. A, Hynes G, Grantham J, Cordell J, et al. (1999) Eukaryotic type II chaperonin CCT interacts with actin through specific subunits. Nature 402: 693-696.
-
(1999)
Nature
, vol.402
, pp. 693-696
-
-
Llorca, O.1
McCormack, E.A.2
Hynes, G.3
Grantham, J.4
Cordell, J.5
-
31
-
-
77955282609
-
Equivalent mutations in the eight subunits of the chaperonin CCT produce dramatically different cellular and gene expression phenotypes
-
Amit M, Weisberg S. J, Nadler-Holly M, McCormack E. A, Feldmesser E, et al. (2010) Equivalent mutations in the eight subunits of the chaperonin CCT produce dramatically different cellular and gene expression phenotypes. J Mol Biol 401: 532-543.
-
(2010)
J Mol Biol
, vol.401
, pp. 532-543
-
-
Amit, M.1
Weisberg, S.J.2
Nadler-Holly, M.3
McCormack, E.A.4
Feldmesser, E.5
-
32
-
-
34250847628
-
Cyclic electron transport around photosystem I: genetic approaches
-
Shikanai T, (2007) Cyclic electron transport around photosystem I: genetic approaches. Annu Rev Plant Biol 58: 199-217.
-
(2007)
Annu Rev Plant Biol
, vol.58
, pp. 199-217
-
-
Shikanai, T.1
-
33
-
-
0032483030
-
Directed disruption of the tobacco ndhB gene impairs cyclic electron flow around photosystem I
-
Shikanai T, Endo T, Hasimoto T, Yamada Y, Asada K, et al. (1998) Directed disruption of the tobacco ndhB gene impairs cyclic electron flow around photosystem I. Proc Natl Acad Sci U S A 95: 9705-9709.
-
(1998)
Proc Natl Acad Sci U S A
, vol.95
, pp. 9705-9709
-
-
Shikanai, T.1
Endo, T.2
Hasimoto, T.3
Yamada, Y.4
Asada, K.5
-
34
-
-
71249105141
-
Towards characterization of the chloroplast NAD(P)H dehydrogenase complex
-
Suorsa M, Sirpiö S, Aro E-M, (2009) Towards characterization of the chloroplast NAD(P)H dehydrogenase complex. Mol Plant 2: 1127-1140.
-
(2009)
Mol Plant
, vol.2
, pp. 1127-1140
-
-
Suorsa, M.1
Sirpiö, S.2
Aro, E.-M.3
-
35
-
-
79958082745
-
Structure and biogenesis of the chloroplast NAD(P)H dehydrogenase complex
-
doi:10.1016/j.bbabio.2010.10.015
-
Peng L, Yamamoto H, Shikanai T, (2010) Structure and biogenesis of the chloroplast NAD(P)H dehydrogenase complex. Biochim Biophys Acta doi:10.1016/j.bbabio.2010.10.015.
-
(2010)
Biochim Biophys Acta
-
-
Peng, L.1
Yamamoto, H.2
Shikanai, T.3
-
36
-
-
12144289987
-
A collection of 11,800 single-copy Ds transposon insertion lines in Arabidopsis
-
Kuromori T, Hirayama T, Kiyosue Y, Takabe H, Mizukado S, et al. (2004) A collection of 11,800 single-copy Ds transposon insertion lines in Arabidopsis. Plant J 37: 897-905.
-
(2004)
Plant J
, vol.37
, pp. 897-905
-
-
Kuromori, T.1
Hirayama, T.2
Kiyosue, Y.3
Takabe, H.4
Mizukado, S.5
-
37
-
-
34249938871
-
Conserved domain structure of pentatricopeptide repeat proteins involved in chloroplast RNA editing
-
Okuda K, Myouga F, Motohashi R, Shinozaki K, Shikanai T, (2007) Conserved domain structure of pentatricopeptide repeat proteins involved in chloroplast RNA editing. Proc Natl Acad Sci U S A 104: 8178-8183.
-
(2007)
Proc Natl Acad Sci U S A
, vol.104
, pp. 8178-8183
-
-
Okuda, K.1
Myouga, F.2
Motohashi, R.3
Shinozaki, K.4
Shikanai, T.5
-
38
-
-
58049211385
-
The chloroplast NAD(P)H dehydrogenase complex interacts with photosystem I in Arabidopsis
-
Peng L, Shimizu H, Shikanai T, (2008) The chloroplast NAD(P)H dehydrogenase complex interacts with photosystem I in Arabidopsis. J Biol Chem 83: 34873-34879.
-
(2008)
J Biol Chem
, vol.83
, pp. 34873-34879
-
-
Peng, L.1
Shimizu, H.2
Shikanai, T.3
-
39
-
-
73249123281
-
Efficient operation of NAD(P)H dehydrogenase requires supercomplex formation with photosystem I via minor LHCI in Arabidopsis
-
Peng L, Fukao Y, Fujiwara M, Takami T, Shikanai T, (2009) Efficient operation of NAD(P)H dehydrogenase requires supercomplex formation with photosystem I via minor LHCI in Arabidopsis. Plant Cell 21: 3623-3640.
-
(2009)
Plant Cell
, vol.21
, pp. 3623-3640
-
-
Peng, L.1
Fukao, Y.2
Fujiwara, M.3
Takami, T.4
Shikanai, T.5
-
40
-
-
26844559000
-
Exponentially modified protein abundance index (emPAI) for estimation of absolute protein amount in proteomics by the number of sequenced peptides per protein
-
Ishihama Y, Oda Y, Tabata T, Sato T, Nagasu T, et al. (2005) Exponentially modified protein abundance index (emPAI) for estimation of absolute protein amount in proteomics by the number of sequenced peptides per protein. Mol Cell Proteomics 4: 1265-1272.
-
(2005)
Mol Cell Proteomics
, vol.4
, pp. 1265-1272
-
-
Ishihama, Y.1
Oda, Y.2
Tabata, T.3
Sato, T.4
Nagasu, T.5
-
41
-
-
77954436604
-
Chloroplast stromal proteins, CRR6 and CRR7, are required for assembly of the NAD(P)H dehydrogenase subcomplex A in Arabidopsis
-
Peng L, Cai W, Shikanai T, (2010) Chloroplast stromal proteins, CRR6 and CRR7, are required for assembly of the NAD(P)H dehydrogenase subcomplex A in Arabidopsis. Plant J 63: 203-211.
-
(2010)
Plant J
, vol.63
, pp. 203-211
-
-
Peng, L.1
Cai, W.2
Shikanai, T.3
-
42
-
-
58149197587
-
ATTED-II provides coexpressed gene networks for Arabidopsis
-
Obayashi T, Hayashi S, Saeki M, Ohta H, Kinoshita K, (2009) ATTED-II provides coexpressed gene networks for Arabidopsis. Nucleic Acids Res 37: D987-D991.
-
(2009)
Nucleic Acids Res
, vol.37
-
-
Obayashi, T.1
Hayashi, S.2
Saeki, M.3
Ohta, H.4
Kinoshita, K.5
-
43
-
-
33646897305
-
Structural features of the GroEL-GroES nano-cage required for rapid folding of encapsulated protein
-
Tang Y. C, Chang H. C, Roeben A, Wischnewski D, Wischnewski N, et al. (2006) Structural features of the GroEL-GroES nano-cage required for rapid folding of encapsulated protein. Cell 125: 903-914.
-
(2006)
Cell
, vol.125
, pp. 903-914
-
-
Tang, Y.C.1
Chang, H.C.2
Roeben, A.3
Wischnewski, D.4
Wischnewski, N.5
-
44
-
-
0034064511
-
Conservation among HSP60 sequences in relation to structure, function, and evolution
-
Brocchieri L, Karlin S, (2000) Conservation among HSP60 sequences in relation to structure, function, and evolution. Prot Sci 9: 476-486.
-
(2000)
Prot Sci
, vol.9
, pp. 476-486
-
-
Brocchieri, L.1
Karlin, S.2
-
45
-
-
0032902669
-
Ancient gene duplication and differential gene flow in plastid lineages: the GroEL/Cpn60 example
-
Wastl J, Fraunholz M, Zauner S, Douglas S, Maier U. G, (1999) Ancient gene duplication and differential gene flow in plastid lineages: the GroEL/Cpn60 example. J Mol Evol 48: 112-117.
-
(1999)
J Mol Evol
, vol.48
, pp. 112-117
-
-
Wastl, J.1
Fraunholz, M.2
Zauner, S.3
Douglas, S.4
Maier, U.G.5
-
46
-
-
32144432437
-
The SWISS-MODEL workspace: a Web-based environment for protein structure homology modelling
-
Arnold K, Bordoli L, Kopp J, Schwede T, (2006) The SWISS-MODEL workspace: a Web-based environment for protein structure homology modelling. Bioinformatics 22: 195-201.
-
(2006)
Bioinformatics
, vol.22
, pp. 195-201
-
-
Arnold, K.1
Bordoli, L.2
Kopp, J.3
Schwede, T.4
-
47
-
-
44349090822
-
Essential role of the chaperonin folding compartment in vivo
-
Tang Y. C, Chang H. C, Chakraborty K, Hartl F. U, Hayer-Hartl M, (2008) Essential role of the chaperonin folding compartment in vivo. EMBO J 27: 1458-1468.
-
(2008)
EMBO J
, vol.27
, pp. 1458-1468
-
-
Tang, Y.C.1
Chang, H.C.2
Chakraborty, K.3
Hartl, F.U.4
Hayer-Hartl, M.5
-
48
-
-
34248349952
-
Perturbed ATPase activity and not "close confinement" of substrate in the cis cavity affects rates of folding by tail-multiplied GroEL
-
Farr G. W, Fenton W. A, Horwich A. L, (2007) Perturbed ATPase activity and not "close confinement" of substrate in the cis cavity affects rates of folding by tail-multiplied GroEL. Proc Natl Acad Sci U S A 104: 5342-5347.
-
(2007)
Proc Natl Acad Sci U S A
, vol.104
, pp. 5342-5347
-
-
Farr, G.W.1
Fenton, W.A.2
Horwich, A.L.3
-
49
-
-
53049084967
-
Effect of the C-terminal truncation on the functional cycle of chaperonin GroEL: implication that the C-terminal region facilitates the transition from the folding-arrested to the folding-competent state
-
Suzuki M, Ueno T, Iizuka R, Miura T, Zako T, et al. (2008) Effect of the C-terminal truncation on the functional cycle of chaperonin GroEL: implication that the C-terminal region facilitates the transition from the folding-arrested to the folding-competent state. J Biol Chem 283: 23931-23939.
-
(2008)
J Biol Chem
, vol.283
, pp. 23931-23939
-
-
Suzuki, M.1
Ueno, T.2
Iizuka, R.3
Miura, T.4
Zako, T.5
-
50
-
-
43749113194
-
Hydrophilic residues 526KNDAAD531 in the flexible C-terminal region of the chaperonin GroEL are critical for substrate protein folding within the central cavity
-
Machida K, Kono-Okada A, Hongo K, Mizobata T, Kawata Y, (2008) Hydrophilic residues 526KNDAAD531 in the flexible C-terminal region of the chaperonin GroEL are critical for substrate protein folding within the central cavity. J Biol Chem 283: 6886-6896.
-
(2008)
J Biol Chem
, vol.283
, pp. 6886-6896
-
-
Machida, K.1
Kono-Okada, A.2
Hongo, K.3
Mizobata, T.4
Kawata, Y.5
-
51
-
-
0027525938
-
The strongly conserved carboxyl-terminus glycine-methionine motif of Escherichia coli GroEL chaperonin is dispensable
-
McLennan N. F, Girshovich A. S, Lissin N. M, Charters Y, Masters M, (1993) The strongly conserved carboxyl-terminus glycine-methionine motif of Escherichia coli GroEL chaperonin is dispensable. Mol Microbiol 7: 49-58.
-
(1993)
Mol Microbiol
, vol.7
, pp. 49-58
-
-
McLennan, N.F.1
Girshovich, A.S.2
Lissin, N.M.3
Charters, Y.4
Masters, M.5
-
52
-
-
0028062818
-
The tail of a chaperonin: the C-terminal region of Escherichia coli GroEL protein
-
McLennan N. F, McAteer S, Masters M, (1994) The tail of a chaperonin: the C-terminal region of Escherichia coli GroEL protein. Mol Microbiol 14: 309-321.
-
(1994)
Mol Microbiol
, vol.14
, pp. 309-321
-
-
McLennan, N.F.1
McAteer, S.2
Masters, M.3
-
53
-
-
0037184939
-
Directed evolution of substrate-optimized GroEL/S chaperonins
-
Wang J. D, Herman C, Tipton K. A, Gross C. A, Weissman J. S, (2002) Directed evolution of substrate-optimized GroEL/S chaperonins. Cell 111: 1027-1039.
-
(2002)
Cell
, vol.111
, pp. 1027-1039
-
-
Wang, J.D.1
Herman, C.2
Tipton, K.A.3
Gross, C.A.4
Weissman, J.S.5
-
54
-
-
78650903812
-
Structural and functional conservation of mycobacterium tuberculosis GroEL paralogs suggests that GroEL1 is a chaperonin
-
Sielaff B, Lee K. S, Tsai F. T, (2011) Structural and functional conservation of mycobacterium tuberculosis GroEL paralogs suggests that GroEL1 is a chaperonin. J Mol Biol 405: 831-839.
-
(2011)
J Mol Biol
, vol.405
, pp. 831-839
-
-
Sielaff, B.1
Lee, K.S.2
Tsai, F.T.3
-
55
-
-
0345393082
-
A nucleus-encoded factor, CRR2, is essential for the expression of chloroplast ndhB in Arabidopsis
-
Hashimoto M, Endo T, Peltier G, Tasaka M, Shikanai T, (2003) A nucleus-encoded factor, CRR2, is essential for the expression of chloroplast ndhB in Arabidopsis. Plant J 36: 541-549.
-
(2003)
Plant J
, vol.36
, pp. 541-549
-
-
Hashimoto, M.1
Endo, T.2
Peltier, G.3
Tasaka, M.4
Shikanai, T.5
-
56
-
-
0031574072
-
The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools
-
Thompson J. D, Gibson T. J, Plewniak F, Jeanmougin F, Higgins D. G, (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25: 4876-4882.
-
(1997)
Nucleic Acids Res
, vol.25
, pp. 4876-4882
-
-
Thompson, J.D.1
Gibson, T.J.2
Plewniak, F.3
Jeanmougin, F.4
Higgins, D.G.5
-
57
-
-
0242578620
-
A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood
-
Guindon S, Gascuel O, (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52: 696-704.
-
(2003)
Syst Biol
, vol.52
, pp. 696-704
-
-
Guindon, S.1
Gascuel, O.2
-
58
-
-
0031773680
-
MODELTEST: testing the model of DNA substitution
-
Posada D, Crandall K. A, (1998) MODELTEST: testing the model of DNA substitution. Bioinformatics 14: 817-818.
-
(1998)
Bioinformatics
, vol.14
, pp. 817-818
-
-
Posada, D.1
Crandall, K.A.2
-
59
-
-
0034849408
-
MRBAYES: Bayesian inference of phylogenetic trees
-
Huelsenbeck J. P, Ronquist F, (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17: 754-755.
-
(2001)
Bioinformatics
, vol.17
, pp. 754-755
-
-
Huelsenbeck, J.P.1
Ronquist, F.2
-
60
-
-
32144432437
-
The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling
-
Arnold K, Bordoli L, Kopp J, Schwede T, (2006) The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22: 195-201.
-
(2006)
Bioinformatics
, vol.22
, pp. 195-201
-
-
Arnold, K.1
Bordoli, L.2
Kopp, J.3
Schwede, T.4
-
61
-
-
0028113299
-
Residues in chaperonin GroEL required for polypeptide binding and release
-
Fenton W. A, Kashi Y, Furtak K, Horwich A. L, (1994) Residues in chaperonin GroEL required for polypeptide binding and release. Nature 371: 614-619.
-
(1994)
Nature
, vol.371
, pp. 614-619
-
-
Fenton, W.A.1
Kashi, Y.2
Furtak, K.3
Horwich, A.L.4
|