메뉴 건너뛰기




Volumn 62, Issue 3, 2011, Pages 743-752

Multi-mode process monitoring method based on PCA mixture model

Author keywords

Fault detection; Mixture model; Multiple mode; PCA; Statistical monitoring

Indexed keywords

DETECTION METHODS; EARLY DETECTION; EXPECTATION MAXIMIZATION; INCREMENTAL EM; MIXTURE COMPONENTS; MIXTURE MODEL; MODEL SELECTION; MONITORING APPROACH; MULTIMODES; MULTIPLE MODE; NONSINGULAR; NUMERICAL EXAMPLE; OPERATING CONDITION; PCA; STATISTICAL MONITORING; TE PROCESS;

EID: 79955411528     PISSN: 04381157     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (41)

References (16)
  • 2
    • 0029709519 scopus 로고    scopus 로고
    • Validation and verification of continuous plants operating modes using multivariate statistical methods
    • Zullo L. Validation and verification of continuous plants operating modes using multivariate statistical methods[J]. Computers & Chemical Engineering, 1996, 20: 683-688
    • (1996) Computers & Chemical Engineering , vol.20 , pp. 683-688
    • Zullo, L.1
  • 3
    • 0032686509 scopus 로고    scopus 로고
    • Real-time monitoring for a process with multiple operating modes
    • Hwang D H, Han C. Real-time monitoring for a process with multiple operating modes[J]. Control Engineering Practice, 1999, 7: 891-902
    • (1999) Control Engineering Practice , vol.7 , pp. 891-902
    • Hwang, D.H.1    Han, C.2
  • 4
    • 6344242754 scopus 로고    scopus 로고
    • A multiple PCA model based technique for the monitoring of processes with multiple operating modes
    • Barbosa-Povoa A. (ed.). Lisbon, Portugal: Elsevier
    • Zhao S J, et al. A multiple PCA model based technique for the monitoring of processes with multiple operating modes//A Barbosa-povoa, European Symposium on Computer Aided Chemical Engineering-14[C]. Lisbon, Portugal: Elsevier, 2004: 865-870
    • (2004) European Symposium on Computer Aided Chemical Engineering-14 , pp. 865-870
    • Zhao, S.J.1
  • 5
    • 24344466403 scopus 로고    scopus 로고
    • Fault detection under varying load conditions based on dynamic multi-principal component models
    • Niu Zheng, Liu Jizhen, Niu Yuguang. Fault detection under varying load conditions based on dynamic multi-principal component models[J]. Journal of Power Engineering, 2005, 25(4): 554-558
    • (2005) Journal of Power Engineering , vol.25 , Issue.4 , pp. 554-558
    • Niu, Z.1    Liu, J.2    Niu, Y.3
  • 6
    • 2342521341 scopus 로고    scopus 로고
    • Process monitoring using a Gaussian mixture model via principal component analysis and discriminant analysis
    • Choi S W, Park J H, Lee I B. Process monitoring using a Gaussian mixture model via principal component analysis and discriminant analysis[J]. Computers & Chemical Engineering, 2004, 28(8): 1377-1387
    • (2004) Computers & Chemical Engineering , vol.28 , Issue.8 , pp. 1377-1387
    • Choi, S.W.1    Park, J.H.2    Lee, I.B.3
  • 7
    • 47549099484 scopus 로고    scopus 로고
    • Multimode process monitoring with Bayesian inference-based finite Gaussian mixture models
    • Yu J, Qin S J. Multimode process monitoring with Bayesian inference-based finite Gaussian mixture models[J]. AIChE J., 2008, 54(7): 1811-1829
    • (2008) AIChE J. , vol.54 , Issue.7 , pp. 1811-1829
    • Yu, J.1    Qin, S.J.2
  • 8
    • 0037410613 scopus 로고    scopus 로고
    • An efficient model order selection for PCA mixture model
    • Kim H C, Kim D, Bang S Y. An efficient model order selection for PCA mixture model[J]. Pattern Recognition Letters, 2003, 24(9/10): 1385-1393
    • (2003) Pattern Recognition Letters , vol.24 , Issue.9-10 , pp. 1385-1393
    • Kim, H.C.1    Kim, D.2    Bang, S.Y.3
  • 9
    • 54249141403 scopus 로고    scopus 로고
    • A BYY scale-incremental EM algorithm for Gaussian mixture learning
    • Li Lei, Ma Jinwen. A BYY scale-incremental EM algorithm for Gaussian mixture learning[J]. Applied Mathematics and Computation, 2008, 205(2): 832-840
    • (2008) Applied Mathematics and Computation , vol.205 , Issue.2 , pp. 832-840
    • Li, L.1    Ma, J.2
  • 11
    • 0036469527 scopus 로고    scopus 로고
    • A greedy EM algorithm for Gaussian mixture learning
    • Vlassis N, Likas A. A greedy EM algorithm for Gaussian mixture learning[J]. Neural Processing Letters, 2002, 15: 77-87
    • (2002) Neural Processing Letters , vol.15 , pp. 77-87
    • Vlassis, N.1    Likas, A.2
  • 12
    • 0037317897 scopus 로고    scopus 로고
    • Efficient greedy learning of Gaussian mxiture models
    • Verbeek J J, Vlassis N, Krose B. Efficient greedy learning of Gaussian mxiture models[J]. Neural Computation, 2003, 15(2): 469-485
    • (2003) Neural Computation , vol.15 , Issue.2 , pp. 469-485
    • Verbeek, J.J.1    Vlassis, N.2    Krose, B.3
  • 13
    • 0742271703 scopus 로고    scopus 로고
    • A gradient BYY harmony learning rule on Gaussian mixture with automated model selection
    • Ma Jinwen, Wang T, Xu L. A gradient BYY harmony learning rule on Gaussian mixture with automated model selection[J]. Neurocomputing, 2004, 56: 481-487
    • (2004) Neurocomputing , vol.56 , pp. 481-487
    • Ma, J.1    Wang, T.2    Xu, L.3
  • 14
    • 56549128315 scopus 로고    scopus 로고
    • Automated model selection(AMS) on finite mixtures: A theoretical analysis
    • Vancouver BC, Canada
    • Ma Jinwen. Automated model selection(AMS) on finite mixtures: a theoretical analysis//Proceedings of the 2006 International Joint Conference on Neural Networks[C]. Vancouver BC, Canada: 8255-8261
    • (2006) Proceedings of the International Joint Conference on Neural Networks , pp. 8255-8261
    • Ma, J.1
  • 16
    • 0030217795 scopus 로고    scopus 로고
    • Decentralized control of the Tennessee Eastman challenge process
    • Ricker N L. Decentralized control of the Tennessee Eastman challenge process[J]. Journal of Process Control, 1996, 6: 205-221
    • (1996) Journal of Process Control , vol.6 , pp. 205-221
    • Ricker, N.L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.