메뉴 건너뛰기




Volumn 205, Issue 2, 2008, Pages 832-840

A BYY scale-incremental EM algorithm for Gaussian mixture learning

(2)  Li, Lei a   Ma, Jinwen a  

a LMAM   (China)

Author keywords

Bayesian Ying Yang (BYY) harmony learning; EM algorithm; Gaussian mixture; Model selection; Unsupervised image segmentation

Indexed keywords

ALGORITHMS; BAYESIAN NETWORKS; BOOLEAN FUNCTIONS; DATA PROCESSING; DIGITAL IMAGE STORAGE; GAUSSIAN DISTRIBUTION; IMAGE PROCESSING; IMAGE SEGMENTATION; LEARNING ALGORITHMS; METAL ANALYSIS; MIXTURES; MODAL ANALYSIS; MODEL STRUCTURES; PARAMETER ESTIMATION; PROBABILITY DENSITY FUNCTION; SET THEORY; STATISTICAL METHODS; TRELLIS CODES;

EID: 54249141403     PISSN: 00963003     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.amc.2008.05.076     Document Type: Article
Times cited : (14)

References (34)
  • 2
    • 0029752880 scopus 로고    scopus 로고
    • A self-organizing network for hyperellipsoidal clustering
    • Mao J., and Jain A.K. A self-organizing network for hyperellipsoidal clustering. IEEE Transactions on Neural Networks 7 1 (1996) 16-29
    • (1996) IEEE Transactions on Neural Networks , vol.7 , Issue.1 , pp. 16-29
    • Mao, J.1    Jain, A.K.2
  • 3
    • 0021404166 scopus 로고
    • Mixture densities, maximum likelihood and the EM algorithm
    • Render R.A., and Walker H.F. Mixture densities, maximum likelihood and the EM algorithm. SIAM Review 26 2 (1984) 195-239
    • (1984) SIAM Review , vol.26 , Issue.2 , pp. 195-239
    • Render, R.A.1    Walker, H.F.2
  • 4
    • 2342533082 scopus 로고    scopus 로고
    • On convergence properties of the EM algorithm for Gaussian mixtures
    • Xu L., and Jordan M.I. On convergence properties of the EM algorithm for Gaussian mixtures. Neural Computation 8 (1996) 129-151
    • (1996) Neural Computation , vol.8 , pp. 129-151
    • Xu, L.1    Jordan, M.I.2
  • 5
    • 0037735771 scopus 로고    scopus 로고
    • Asymptotic convergence rate of the EM algorithm for Gaussian mixtures
    • Ma J., Xu L., and Jordan M.I. Asymptotic convergence rate of the EM algorithm for Gaussian mixtures. Neural Computation 12 12 (2000) 2881-2907
    • (2000) Neural Computation , vol.12 , Issue.12 , pp. 2881-2907
    • Ma, J.1    Xu, L.2    Jordan, M.I.3
  • 6
    • 24144442632 scopus 로고    scopus 로고
    • Asymptotic convergence properties of the EM algorithm with respect to the overlap in the mixture
    • Ma J., and Xu L. Asymptotic convergence properties of the EM algorithm with respect to the overlap in the mixture. Neurocomputing 68 (2005) 105-129
    • (2005) Neurocomputing , vol.68 , pp. 105-129
    • Ma, J.1    Xu, L.2
  • 7
    • 25144432981 scopus 로고    scopus 로고
    • On the correct convergence of the EM algorithm for Gaussian mixtures
    • Ma J., and Fu S. On the correct convergence of the EM algorithm for Gaussian mixtures. Pattern Recognition l38 12 (2005) 2602-2611
    • (2005) Pattern Recognition , vol.l38 , Issue.12 , pp. 2602-2611
    • Ma, J.1    Fu, S.2
  • 8
    • 0001781043 scopus 로고
    • Distribution problems in clustering
    • Van Ryzin J. (Ed), Academic Press
    • Hartigan J.A. Distribution problems in clustering. In: Van Ryzin J. (Ed). Classification and Clustering (1977), Academic Press 45-72
    • (1977) Classification and Clustering , pp. 45-72
    • Hartigan, J.A.1
  • 9
    • 0001332786 scopus 로고
    • An examination of procedures for determining the number of clusters in a data set
    • Millgan G.W., and Copper M.C. An examination of procedures for determining the number of clusters in a data set. Psychometrika 46 (1985) 187-199
    • (1985) Psychometrika , vol.46 , pp. 187-199
    • Millgan, G.W.1    Copper, M.C.2
  • 10
    • 0016355478 scopus 로고
    • A new look at the statistical model identification
    • Akaike H. A new look at the statistical model identification. IEEE Transactions on Automatic Control AC-19 (1974) 716-723
    • (1974) IEEE Transactions on Automatic Control , vol.AC-19 , pp. 716-723
    • Akaike, H.1
  • 11
    • 34250108028 scopus 로고
    • Model selection and Akaike's information criterion: the general theory and its analytical extensions
    • Bozdogan H. Model selection and Akaike's information criterion: the general theory and its analytical extensions. Psychometrika 52 (1987) 345-370
    • (1987) Psychometrika , vol.52 , pp. 345-370
    • Bozdogan, H.1
  • 12
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Scharz G. Estimating the dimension of a model. The Annals of Statistics 6 2 (1978) 461-464
    • (1978) The Annals of Statistics , vol.6 , Issue.2 , pp. 461-464
    • Scharz, G.1
  • 14
    • 54249121519 scopus 로고    scopus 로고
    • J. Oliver, R. Baxterand, C. Wallace, Unsupervised learning using MML, in: Proceedings of the 13th International Conference on Machine Learning, 1996, pp. 364-372.
    • J. Oliver, R. Baxterand, C. Wallace, Unsupervised learning using MML, in: Proceedings of the 13th International Conference on Machine Learning, 1996, pp. 364-372.
  • 16
    • 77956889087 scopus 로고
    • Reversible jump Markov chain Monte Carlo computation and Bayesian model determination
    • Peter J.G. Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika 82 4 (1995) 711-732
    • (1995) Biometrika , vol.82 , Issue.4 , pp. 711-732
    • Peter, J.G.1
  • 18
    • 0036887504 scopus 로고    scopus 로고
    • Bayesian model search for mixture models based on optimizing variational bounds
    • Ueda N., and Ghahramani Z. Bayesian model search for mixture models based on optimizing variational bounds. Neural Networks 15 (2002) 1223-1241
    • (2002) Neural Networks , vol.15 , pp. 1223-1241
    • Ueda, N.1    Ghahramani, Z.2
  • 19
    • 54249157222 scopus 로고    scopus 로고
    • L. Xu, Ying-Yang machine: a Bayesian-Kullback scheme for unified learnings and new results on vector quantization, in: Proceedings of the 1995 International Conference on Neural Information Processing (ICONIP'95), vol. 2, 1995, pp. 977-988.
    • L. Xu, Ying-Yang machine: a Bayesian-Kullback scheme for unified learnings and new results on vector quantization, in: Proceedings of the 1995 International Conference on Neural Information Processing (ICONIP'95), vol. 2, 1995, pp. 977-988.
  • 20
    • 0031270958 scopus 로고    scopus 로고
    • Bayesian Ying-Yang machine, clustering and number of clusters
    • Xu L. Bayesian Ying-Yang machine, clustering and number of clusters. Pattern Recognition Letters 18 (1997) 1167-1178
    • (1997) Pattern Recognition Letters , vol.18 , pp. 1167-1178
    • Xu, L.1
  • 21
    • 0035259214 scopus 로고    scopus 로고
    • Best harmony, unified RPCL and automated model selection for unsupervised and supervised learning on Gaussian mixtures, three-layer nets and ME-RBF-SVM models
    • Xu L. Best harmony, unified RPCL and automated model selection for unsupervised and supervised learning on Gaussian mixtures, three-layer nets and ME-RBF-SVM models. International Journal of Neural Systems 11 1 (2001) 43-69
    • (2001) International Journal of Neural Systems , vol.11 , Issue.1 , pp. 43-69
    • Xu, L.1
  • 22
    • 0036790879 scopus 로고    scopus 로고
    • BYY harmony learning, structural RPCL and topological self-organizing on mixture modes
    • Xu L. BYY harmony learning, structural RPCL and topological self-organizing on mixture modes. Neural Networks 15 8-9 (2002) 1231-1237
    • (2002) Neural Networks , vol.15 , Issue.8-9 , pp. 1231-1237
    • Xu, L.1
  • 23
    • 0742271703 scopus 로고    scopus 로고
    • A gradient BYY harmony learning rule on Gaussian mixture with automated model selection
    • Ma J., Wang T., and Xu L. A gradient BYY harmony learning rule on Gaussian mixture with automated model selection. Neurocomputing 56 (2004) 481-487
    • (2004) Neurocomputing , vol.56 , pp. 481-487
    • Ma, J.1    Wang, T.2    Xu, L.3
  • 24
    • 23944438437 scopus 로고    scopus 로고
    • Conjugate and natural gradient rules for BYY harmony learning on Gaussian mixture with automated model selection
    • Ma J., et al. Conjugate and natural gradient rules for BYY harmony learning on Gaussian mixture with automated model selection. International Journal of Pattern Recognition and Artificial Intelligence 19 5 (2005) 701-713
    • (2005) International Journal of Pattern Recognition and Artificial Intelligence , vol.19 , Issue.5 , pp. 701-713
    • Ma, J.1
  • 25
    • 33748846576 scopus 로고    scopus 로고
    • BYY harmony learning on finite mixture: adaptive gradient implementation and a floating RPCL mechanism
    • Ma J., and Wang L. BYY harmony learning on finite mixture: adaptive gradient implementation and a floating RPCL mechanism. Neural Processing Letters 24 1 (2006) 19-40
    • (2006) Neural Processing Letters , vol.24 , Issue.1 , pp. 19-40
    • Ma, J.1    Wang, L.2
  • 26
    • 39949085586 scopus 로고    scopus 로고
    • A fast fixed-point BYY harmony learning algorithm on Gaussian mixture with automated model selection
    • Ma J., and He X. A fast fixed-point BYY harmony learning algorithm on Gaussian mixture with automated model selection. Pattern Recognition letters 29 (2008) 701-711
    • (2008) Pattern Recognition letters , vol.29 , pp. 701-711
    • Ma, J.1    He, X.2
  • 27
    • 54249152555 scopus 로고    scopus 로고
    • J. Ma, Automated model selection (AMS) on finite mixtures: a theoretical analysis, in: Proceedings of the 2006 International Joint Conference on Neural Networks (IJCNN06), 2006, pp. 8255-8261.
    • J. Ma, Automated model selection (AMS) on finite mixtures: a theoretical analysis, in: Proceedings of the 2006 International Joint Conference on Neural Networks (IJCNN06), 2006, pp. 8255-8261.
  • 28
    • 33947709464 scopus 로고    scopus 로고
    • The BYY annealing learning algorithm for Gaussian mixture with automated model selection
    • Ma J., and Liu J. The BYY annealing learning algorithm for Gaussian mixture with automated model selection. Pattern Recognition 40 (2007) 2029-2037
    • (2007) Pattern Recognition , vol.40 , pp. 2029-2037
    • Ma, J.1    Liu, J.2
  • 30
    • 0036469527 scopus 로고    scopus 로고
    • A greedy EM algorithm for Gaussian mixture learning
    • Vlassis N., and Likas A. A greedy EM algorithm for Gaussian mixture learning. Neural Processing Letters 15 (2002) 77-87
    • (2002) Neural Processing Letters , vol.15 , pp. 77-87
    • Vlassis, N.1    Likas, A.2
  • 31
    • 0037317897 scopus 로고    scopus 로고
    • Efficient greedy learning of Gaussian mixture models
    • Verbeek J.J., Vlassis N., and Krose B. Efficient greedy learning of Gaussian mixture models. Neural Computation 15 2 (2003) 469-485
    • (2003) Neural Computation , vol.15 , Issue.2 , pp. 469-485
    • Verbeek, J.J.1    Vlassis, N.2    Krose, B.3
  • 32
    • 0038309400 scopus 로고    scopus 로고
    • EM algorithms for Gaussian mixtures with split-and-merge operation
    • Zhang Z., et al. EM algorithms for Gaussian mixtures with split-and-merge operation. Pattern Recognition 36 (2003) 1973-1983
    • (2003) Pattern Recognition , vol.36 , pp. 1973-1983
    • Zhang, Z.1
  • 34
    • 0033695853 scopus 로고    scopus 로고
    • N. Boujeman, Generalized competitive clustering for image segmentation, in: Proceedings of the 19th International Conference of the North American Fuzzy Information Processing Society, 2000, pp. 133-137.
    • N. Boujeman, Generalized competitive clustering for image segmentation, in: Proceedings of the 19th International Conference of the North American Fuzzy Information Processing Society, 2000, pp. 133-137.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.