-
2
-
-
0029752880
-
A self-organizing network for hyperellipsoidal clustering
-
Mao J., and Jain A.K. A self-organizing network for hyperellipsoidal clustering. IEEE Transactions on Neural Networks 7 1 (1996) 16-29
-
(1996)
IEEE Transactions on Neural Networks
, vol.7
, Issue.1
, pp. 16-29
-
-
Mao, J.1
Jain, A.K.2
-
3
-
-
0021404166
-
Mixture densities, maximum likelihood and the EM algorithm
-
Render R.A., and Walker H.F. Mixture densities, maximum likelihood and the EM algorithm. SIAM Review 26 2 (1984) 195-239
-
(1984)
SIAM Review
, vol.26
, Issue.2
, pp. 195-239
-
-
Render, R.A.1
Walker, H.F.2
-
4
-
-
2342533082
-
On convergence properties of the EM algorithm for Gaussian mixtures
-
Xu L., and Jordan M.I. On convergence properties of the EM algorithm for Gaussian mixtures. Neural Computation 8 (1996) 129-151
-
(1996)
Neural Computation
, vol.8
, pp. 129-151
-
-
Xu, L.1
Jordan, M.I.2
-
5
-
-
0037735771
-
Asymptotic convergence rate of the EM algorithm for Gaussian mixtures
-
Ma J., Xu L., and Jordan M.I. Asymptotic convergence rate of the EM algorithm for Gaussian mixtures. Neural Computation 12 12 (2000) 2881-2907
-
(2000)
Neural Computation
, vol.12
, Issue.12
, pp. 2881-2907
-
-
Ma, J.1
Xu, L.2
Jordan, M.I.3
-
6
-
-
24144442632
-
Asymptotic convergence properties of the EM algorithm with respect to the overlap in the mixture
-
Ma J., and Xu L. Asymptotic convergence properties of the EM algorithm with respect to the overlap in the mixture. Neurocomputing 68 (2005) 105-129
-
(2005)
Neurocomputing
, vol.68
, pp. 105-129
-
-
Ma, J.1
Xu, L.2
-
7
-
-
25144432981
-
On the correct convergence of the EM algorithm for Gaussian mixtures
-
Ma J., and Fu S. On the correct convergence of the EM algorithm for Gaussian mixtures. Pattern Recognition l38 12 (2005) 2602-2611
-
(2005)
Pattern Recognition
, vol.l38
, Issue.12
, pp. 2602-2611
-
-
Ma, J.1
Fu, S.2
-
8
-
-
0001781043
-
Distribution problems in clustering
-
Van Ryzin J. (Ed), Academic Press
-
Hartigan J.A. Distribution problems in clustering. In: Van Ryzin J. (Ed). Classification and Clustering (1977), Academic Press 45-72
-
(1977)
Classification and Clustering
, pp. 45-72
-
-
Hartigan, J.A.1
-
9
-
-
0001332786
-
An examination of procedures for determining the number of clusters in a data set
-
Millgan G.W., and Copper M.C. An examination of procedures for determining the number of clusters in a data set. Psychometrika 46 (1985) 187-199
-
(1985)
Psychometrika
, vol.46
, pp. 187-199
-
-
Millgan, G.W.1
Copper, M.C.2
-
10
-
-
0016355478
-
A new look at the statistical model identification
-
Akaike H. A new look at the statistical model identification. IEEE Transactions on Automatic Control AC-19 (1974) 716-723
-
(1974)
IEEE Transactions on Automatic Control
, vol.AC-19
, pp. 716-723
-
-
Akaike, H.1
-
11
-
-
34250108028
-
Model selection and Akaike's information criterion: the general theory and its analytical extensions
-
Bozdogan H. Model selection and Akaike's information criterion: the general theory and its analytical extensions. Psychometrika 52 (1987) 345-370
-
(1987)
Psychometrika
, vol.52
, pp. 345-370
-
-
Bozdogan, H.1
-
12
-
-
0000120766
-
Estimating the dimension of a model
-
Scharz G. Estimating the dimension of a model. The Annals of Statistics 6 2 (1978) 461-464
-
(1978)
The Annals of Statistics
, vol.6
, Issue.2
, pp. 461-464
-
-
Scharz, G.1
-
14
-
-
54249121519
-
-
J. Oliver, R. Baxterand, C. Wallace, Unsupervised learning using MML, in: Proceedings of the 13th International Conference on Machine Learning, 1996, pp. 364-372.
-
J. Oliver, R. Baxterand, C. Wallace, Unsupervised learning using MML, in: Proceedings of the 13th International Conference on Machine Learning, 1996, pp. 364-372.
-
-
-
-
16
-
-
77956889087
-
Reversible jump Markov chain Monte Carlo computation and Bayesian model determination
-
Peter J.G. Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika 82 4 (1995) 711-732
-
(1995)
Biometrika
, vol.82
, Issue.4
, pp. 711-732
-
-
Peter, J.G.1
-
18
-
-
0036887504
-
Bayesian model search for mixture models based on optimizing variational bounds
-
Ueda N., and Ghahramani Z. Bayesian model search for mixture models based on optimizing variational bounds. Neural Networks 15 (2002) 1223-1241
-
(2002)
Neural Networks
, vol.15
, pp. 1223-1241
-
-
Ueda, N.1
Ghahramani, Z.2
-
19
-
-
54249157222
-
-
L. Xu, Ying-Yang machine: a Bayesian-Kullback scheme for unified learnings and new results on vector quantization, in: Proceedings of the 1995 International Conference on Neural Information Processing (ICONIP'95), vol. 2, 1995, pp. 977-988.
-
L. Xu, Ying-Yang machine: a Bayesian-Kullback scheme for unified learnings and new results on vector quantization, in: Proceedings of the 1995 International Conference on Neural Information Processing (ICONIP'95), vol. 2, 1995, pp. 977-988.
-
-
-
-
20
-
-
0031270958
-
Bayesian Ying-Yang machine, clustering and number of clusters
-
Xu L. Bayesian Ying-Yang machine, clustering and number of clusters. Pattern Recognition Letters 18 (1997) 1167-1178
-
(1997)
Pattern Recognition Letters
, vol.18
, pp. 1167-1178
-
-
Xu, L.1
-
21
-
-
0035259214
-
Best harmony, unified RPCL and automated model selection for unsupervised and supervised learning on Gaussian mixtures, three-layer nets and ME-RBF-SVM models
-
Xu L. Best harmony, unified RPCL and automated model selection for unsupervised and supervised learning on Gaussian mixtures, three-layer nets and ME-RBF-SVM models. International Journal of Neural Systems 11 1 (2001) 43-69
-
(2001)
International Journal of Neural Systems
, vol.11
, Issue.1
, pp. 43-69
-
-
Xu, L.1
-
22
-
-
0036790879
-
BYY harmony learning, structural RPCL and topological self-organizing on mixture modes
-
Xu L. BYY harmony learning, structural RPCL and topological self-organizing on mixture modes. Neural Networks 15 8-9 (2002) 1231-1237
-
(2002)
Neural Networks
, vol.15
, Issue.8-9
, pp. 1231-1237
-
-
Xu, L.1
-
23
-
-
0742271703
-
A gradient BYY harmony learning rule on Gaussian mixture with automated model selection
-
Ma J., Wang T., and Xu L. A gradient BYY harmony learning rule on Gaussian mixture with automated model selection. Neurocomputing 56 (2004) 481-487
-
(2004)
Neurocomputing
, vol.56
, pp. 481-487
-
-
Ma, J.1
Wang, T.2
Xu, L.3
-
24
-
-
23944438437
-
Conjugate and natural gradient rules for BYY harmony learning on Gaussian mixture with automated model selection
-
Ma J., et al. Conjugate and natural gradient rules for BYY harmony learning on Gaussian mixture with automated model selection. International Journal of Pattern Recognition and Artificial Intelligence 19 5 (2005) 701-713
-
(2005)
International Journal of Pattern Recognition and Artificial Intelligence
, vol.19
, Issue.5
, pp. 701-713
-
-
Ma, J.1
-
25
-
-
33748846576
-
BYY harmony learning on finite mixture: adaptive gradient implementation and a floating RPCL mechanism
-
Ma J., and Wang L. BYY harmony learning on finite mixture: adaptive gradient implementation and a floating RPCL mechanism. Neural Processing Letters 24 1 (2006) 19-40
-
(2006)
Neural Processing Letters
, vol.24
, Issue.1
, pp. 19-40
-
-
Ma, J.1
Wang, L.2
-
26
-
-
39949085586
-
A fast fixed-point BYY harmony learning algorithm on Gaussian mixture with automated model selection
-
Ma J., and He X. A fast fixed-point BYY harmony learning algorithm on Gaussian mixture with automated model selection. Pattern Recognition letters 29 (2008) 701-711
-
(2008)
Pattern Recognition letters
, vol.29
, pp. 701-711
-
-
Ma, J.1
He, X.2
-
27
-
-
54249152555
-
-
J. Ma, Automated model selection (AMS) on finite mixtures: a theoretical analysis, in: Proceedings of the 2006 International Joint Conference on Neural Networks (IJCNN06), 2006, pp. 8255-8261.
-
J. Ma, Automated model selection (AMS) on finite mixtures: a theoretical analysis, in: Proceedings of the 2006 International Joint Conference on Neural Networks (IJCNN06), 2006, pp. 8255-8261.
-
-
-
-
28
-
-
33947709464
-
The BYY annealing learning algorithm for Gaussian mixture with automated model selection
-
Ma J., and Liu J. The BYY annealing learning algorithm for Gaussian mixture with automated model selection. Pattern Recognition 40 (2007) 2029-2037
-
(2007)
Pattern Recognition
, vol.40
, pp. 2029-2037
-
-
Ma, J.1
Liu, J.2
-
30
-
-
0036469527
-
A greedy EM algorithm for Gaussian mixture learning
-
Vlassis N., and Likas A. A greedy EM algorithm for Gaussian mixture learning. Neural Processing Letters 15 (2002) 77-87
-
(2002)
Neural Processing Letters
, vol.15
, pp. 77-87
-
-
Vlassis, N.1
Likas, A.2
-
31
-
-
0037317897
-
Efficient greedy learning of Gaussian mixture models
-
Verbeek J.J., Vlassis N., and Krose B. Efficient greedy learning of Gaussian mixture models. Neural Computation 15 2 (2003) 469-485
-
(2003)
Neural Computation
, vol.15
, Issue.2
, pp. 469-485
-
-
Verbeek, J.J.1
Vlassis, N.2
Krose, B.3
-
32
-
-
0038309400
-
EM algorithms for Gaussian mixtures with split-and-merge operation
-
Zhang Z., et al. EM algorithms for Gaussian mixtures with split-and-merge operation. Pattern Recognition 36 (2003) 1973-1983
-
(2003)
Pattern Recognition
, vol.36
, pp. 1973-1983
-
-
Zhang, Z.1
-
34
-
-
0033695853
-
-
N. Boujeman, Generalized competitive clustering for image segmentation, in: Proceedings of the 19th International Conference of the North American Fuzzy Information Processing Society, 2000, pp. 133-137.
-
N. Boujeman, Generalized competitive clustering for image segmentation, in: Proceedings of the 19th International Conference of the North American Fuzzy Information Processing Society, 2000, pp. 133-137.
-
-
-
|