메뉴 건너뛰기




Volumn 81, Issue 7, 2011, Pages 773-782

A very fast algorithm for matrix factorization

Author keywords

High dimensional data; Matrix factorization; Microarray gene expression data; Nonnegative matrix factorization; Supervised classification

Indexed keywords


EID: 79955159094     PISSN: 01677152     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.spl.2011.02.001     Document Type: Article
Times cited : (20)

References (33)
  • 7
    • 49149085985 scopus 로고    scopus 로고
    • When does non-negative matrix factorization give a correct decomposition into parts?
    • MIT Press, Cambridge, MA
    • Donoho D., Stodden V. When does non-negative matrix factorization give a correct decomposition into parts?. Advances in Neural Information Processing Systems 2004, vol. 16. MIT Press, Cambridge, MA.
    • (2004) Advances in Neural Information Processing Systems , vol.16
    • Donoho, D.1    Stodden, V.2
  • 8
    • 0000802374 scopus 로고
    • The approximation of one matrix by another of low rank
    • Eckart C., Young G. The approximation of one matrix by another of low rank. Psychometrika 1936, 1:211-218.
    • (1936) Psychometrika , vol.1 , pp. 211-218
    • Eckart, C.1    Young, G.2
  • 9
    • 33845903308 scopus 로고    scopus 로고
    • Inferential, robust non-negative matrix factorization analysis of microarray data
    • Fogel P., Young S.S., Hawkins D.M., Ledirac N. Inferential, robust non-negative matrix factorization analysis of microarray data. Bioinformatics 2007, 23:44-49.
    • (2007) Bioinformatics , vol.23 , pp. 44-49
    • Fogel, P.1    Young, S.S.2    Hawkins, D.M.3    Ledirac, N.4
  • 10
    • 27744601822 scopus 로고    scopus 로고
    • Improving molecular cancer class discovery through sparse non-negative matrix factorization
    • Gao Y., Church G. Improving molecular cancer class discovery through sparse non-negative matrix factorization. Bioinformatics 2005, 21:3970-3975.
    • (2005) Bioinformatics , vol.21 , pp. 3970-3975
    • Gao, Y.1    Church, G.2
  • 13
    • 66549088006 scopus 로고    scopus 로고
    • On consistency and sparsity for principal components analysis in high dimensions
    • Johnstone I.M., Lu A.U. On consistency and sparsity for principal components analysis in high dimensions. Journal of the American Statistical Association 2009, 104:682-693.
    • (2009) Journal of the American Statistical Association , vol.104 , pp. 682-693
    • Johnstone, I.M.1    Lu, A.U.2
  • 14
    • 75549090213 scopus 로고    scopus 로고
    • KEGG for representation and analysis of molecular networks involving diseases and drugs
    • Kanehisa M., Goto S., Furumichi M., Tanabe M., Hirakawa M. KEGG for representation and analysis of molecular networks involving diseases and drugs. Nucleic Acids Research 2010, 38:D355-D360.
    • (2010) Nucleic Acids Research , vol.38
    • Kanehisa, M.1    Goto, S.2    Furumichi, M.3    Tanabe, M.4    Hirakawa, M.5
  • 15
    • 0034954414 scopus 로고    scopus 로고
    • Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks
    • Khan J., Wei J., Ringner M., Saal L., Ladanyi M., Westermann F., Berthold F., Schwab M. Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks. Nature Medicine 2001, 7:673-679.
    • (2001) Nature Medicine , vol.7 , pp. 673-679
    • Khan, J.1    Wei, J.2    Ringner, M.3    Saal, L.4    Ladanyi, M.5    Westermann, F.6    Berthold, F.7    Schwab, M.8
  • 16
    • 70350647708 scopus 로고    scopus 로고
    • Collaborative filtering with temporal dynamics. In: Proceedings of the 15th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. Paris.
    • Koren, Y., 2009. Collaborative filtering with temporal dynamics. In: Proceedings of the 15th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. Paris. pp. 447-455.
    • (2009) , pp. 447-455
    • Koren, Y.1
  • 17
    • 71549152223 scopus 로고    scopus 로고
    • Matrix factorization for recovery of biological processes from microarray data
    • Academic Press, New York
    • Kossenkov A.V., Ochs M.F. Matrix factorization for recovery of biological processes from microarray data. Methods in Enzymology 2009, vol. 467:59-77. Academic Press, New York.
    • (2009) Methods in Enzymology , vol.467 , pp. 59-77
    • Kossenkov, A.V.1    Ochs, M.F.2
  • 18
    • 0033592606 scopus 로고    scopus 로고
    • Learning the parts of objects by non-negative matrix factorization
    • Lee D.D., Seung H.S. Learning the parts of objects by non-negative matrix factorization. Nature 1999, 401:788-791.
    • (1999) Nature , vol.401 , pp. 788-791
    • Lee, D.D.1    Seung, H.S.2
  • 20
    • 0035683536 scopus 로고    scopus 로고
    • Learning spatially localized parts-based representation. In: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition. Hawaii.
    • Li, S.Z., Hou, X.W., Zhang, H.J., Cheng, Q.S., 2001. Learning spatially localized parts-based representation. In: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition. Hawaii. vol. I. pp. 207-212.
    • (2001) , vol.13 , pp. 207-212
    • Li, S.Z.1    Hou, X.W.2    Zhang, H.J.3    Cheng, Q.S.4
  • 21
    • 0036203115 scopus 로고    scopus 로고
    • A mixture model-based approach to the clustering of microarray expression data
    • McLachlan G.J., Bean R.W., Peel D. A mixture model-based approach to the clustering of microarray expression data. Bioinformatics 2002, 18:413-422.
    • (2002) Bioinformatics , vol.18 , pp. 413-422
    • McLachlan, G.J.1    Bean, R.W.2    Peel, D.3
  • 22
    • 0037952792 scopus 로고    scopus 로고
    • Microarrays, pattern recognition and exploratory data analysis
    • Mertens B. Microarrays, pattern recognition and exploratory data analysis. Statistics in Medicine 2003, 22(11):1879-1899.
    • (2003) Statistics in Medicine , vol.22 , Issue.11 , pp. 1879-1899
    • Mertens, B.1
  • 24
    • 57949113756 scopus 로고    scopus 로고
    • Improving regularized singular value decomposition for collaborative filtering
    • ACM, San Jose, CA
    • Paterek A. Improving regularized singular value decomposition for collaborative filtering. KDD Cup 2007, 39-42. ACM, San Jose, CA.
    • (2007) KDD Cup , pp. 39-42
    • Paterek, A.1
  • 25
    • 33644878428 scopus 로고    scopus 로고
    • Early detection of breast cancer based on gene-expression patterns in peripheral blood cells
    • Sharma P., Tibshirani R., Skaane P., Urdal P., Berghagen H. Early detection of breast cancer based on gene-expression patterns in peripheral blood cells. Breast Cancer Research 2005, 7:R634-R644.
    • (2005) Breast Cancer Research , vol.7
    • Sharma, P.1    Tibshirani, R.2    Skaane, P.3    Urdal, P.4    Berghagen, H.5
  • 27
    • 79955143547 scopus 로고    scopus 로고
    • The GO Consortium, Gene ontolog [Online]. Available:
    • The GO Consortium, 2009. Gene ontolog [Online]. Available: http://www.geneontology.org.
    • (2009)
  • 29
    • 70149096300 scopus 로고    scopus 로고
    • A penalized matrix decomposition, with applications to sparse principal components and canonical correlation analysis
    • Witten D.M., Tibshirani R., Hastie R. A penalized matrix decomposition, with applications to sparse principal components and canonical correlation analysis. Biostatistics 2009, 10:515-534.
    • (2009) Biostatistics , vol.10 , pp. 515-534
    • Witten, D.M.1    Tibshirani, R.2    Hastie, R.3
  • 31
    • 34447331698 scopus 로고    scopus 로고
    • Classification based upon expression data: bias and precision of error rates
    • Wood I., Visscher P., Mengersen K. Classification based upon expression data: bias and precision of error rates. Bioinformatics 2007, 23:1363-1370.
    • (2007) Bioinformatics , vol.23 , pp. 1363-1370
    • Wood, I.1    Visscher, P.2    Mengersen, K.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.