메뉴 건너뛰기




Volumn , Issue , 2009, Pages 44-49

On a general method for matrix factorisation applied to supervised classification

Author keywords

Cross validation; Gene expression data; Gradient based optimisation; Matrix factorisation

Indexed keywords

CROSS VALIDATION; GENE EXPRESSION DATA; GRADIENT BASED; MATRIX; OPTIMISATIONS;

EID: 72849110574     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/BIBMW.2009.5332135     Document Type: Conference Paper
Times cited : (7)

References (18)
  • 1
    • 0037076322 scopus 로고    scopus 로고
    • Selection bias in gene extraction on the basis of microarray gene expression data
    • C. Ambroise and G. McLachlan. "Selection bias in gene extraction on the basis of microarray gene expression data." Proceedings of the National Academy of Sciences USA, vol. 99, pp. 6562-6566, 2002.
    • (2002) Proceedings of the National Academy of Sciences USA , vol.99 , pp. 6562-6566
    • Ambroise, C.1    McLachlan, G.2
  • 2
    • 0037461021 scopus 로고    scopus 로고
    • Effective dimension reduction methods for tumor classification using gene expression data
    • A. Antoniadis, S. Lambert-Lacroix and F. Leblanc. "Effective dimension reduction methods for tumor classification using gene expression data." Bioinformatics, vol. 19, no. 5, pp. 563-570, 2003.
    • (2003) Bioinformatics , vol.19 , Issue.5 , pp. 563-570
    • Antoniadis, A.1    Lambert-Lacroix, S.2    Leblanc, F.3
  • 3
    • 0034598746 scopus 로고    scopus 로고
    • Distinct types of diffuse large B-celllymphoma identified by gene expression profiling
    • A. Alizadeh et al. "Distinct types of diffuse large B-celllymphoma identified by gene expression profiling." Nature, vol. 403, pp. 503-511, 2000.
    • (2000) Nature , vol.403 , pp. 503-511
    • Alizadeh, A.1
  • 5
    • 70350647580 scopus 로고    scopus 로고
    • Pervasive parallelism in data mining: Dataflow solution to co-clustering large and sparse Netflix data
    • S. Daruru, N. Marin, M. Walker and J. Ghosh "Pervasive parallelism in data mining: dataflow solution to co-clustering large and sparse Netflix data." KDD, Paris, pp. 1115-1123, 2009.
    • (2009) KDD, Paris , pp. 1115-1123
    • Daruru, S.1    Marin, N.2    Walker, M.3    Ghosh, J.4
  • 6
    • 0040528764 scopus 로고
    • Multinomial logistic regression algorithm
    • D. Bohning. "Multinomial logistic regression algorithm." Ann. Inst. Statist. Math., vol. 44, no. 1, pp. 197-200, 1992.
    • (1992) Ann. Inst. Statist. Math , vol.44 , Issue.1 , pp. 197-200
    • Bohning, D.1
  • 7
    • 0038391397 scopus 로고    scopus 로고
    • Boosting for tumor classification with gene expression data
    • M. Dettling and P. Buhlmann. "Boosting for tumor classification with gene expression data." Bioinformatics, vol. 19, no. 9, pp. 1061-1069, 2003.
    • (2003) Bioinformatics , vol.19 , Issue.9 , pp. 1061-1069
    • Dettling, M.1    Buhlmann, P.2
  • 8
    • 0036489046 scopus 로고    scopus 로고
    • Comparison of discrimination methods for the classification of tumors using gene expression data
    • S. Dudoit, J. Fridlyand and T. Speed. "Comparison of discrimination methods for the classification of tumors using gene expression data." Journal of Americal Statistical Association, vol. 97, no. 457, pp. 77-87, 2002.
    • (2002) Journal of Americal Statistical Association , vol.97 , Issue.457 , pp. 77-87
    • Dudoit, S.1    Fridlyand, J.2    Speed, T.3
  • 9
    • 0033569406 scopus 로고    scopus 로고
    • Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring
    • T. Golub, D. Slonim, P. Tamayo, C. Huard, M. Gaasenbeek, J. Mesirov, H. Coller, M. Loh and J. Downing. "Molecular classification of cancer: class discovery and class prediction by gene expression monitoring." Science, 286, pp. 531-537, 1999.
    • (1999) Science , vol.286 , pp. 531-537
    • Golub, T.1    Slonim, D.2    Tamayo, P.3    Huard, C.4    Gaasenbeek, M.5    Mesirov, J.6    Coller, H.7    Loh, M.8    Downing, J.9
  • 10
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • I. Guyon, J. Weston, S. Barnhill and V. Vapnik. "Gene selection for cancer classification using support vector machines." Machine Learning, vol. 46, pp. 389-422, 2002.
    • (2002) Machine Learning , vol.46 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.4
  • 11
    • 33646181069 scopus 로고    scopus 로고
    • A novel ensemble machine learning for robust microarray data classification
    • Y. Peng. "A novel ensemble machine learning for robust microarray data classification." Computers in Biology and Medicine, vol. 36, pp. 553-573, 2006.
    • (2006) Computers in Biology and Medicine , vol.36 , pp. 553-573
    • Peng, Y.1
  • 12
    • 65449121157 scopus 로고    scopus 로고
    • Factorization meets the neighborhood: A multifaceted collaborative filtering model
    • Y. Koren. "Factorization meets the neighborhood: a multifaceted collaborative filtering model." KDD, Las Vegas, 2008.
    • (2008) KDD, Las Vegas
    • Koren, Y.1
  • 13
    • 70350647708 scopus 로고    scopus 로고
    • Collaborative filtering with temporal dynamics
    • Y. Koren. "Collaborative filtering with temporal dynamics." KDD, Paris, pp. 447-455, 2009.
    • (2009) KDD, Paris , pp. 447-455
    • Koren, Y.1
  • 14
    • 0001093042 scopus 로고    scopus 로고
    • Algorithms for non-negative matrix factorisation
    • D. Lee and H. Seung. "Algorithms for non-negative matrix factorisation." NIPS, 2000.
    • (2000) NIPS
    • Lee, D.1    Seung, H.2
  • 15
    • 0036203115 scopus 로고    scopus 로고
    • A mixture model-based approach to the clustering of microarray expression data
    • G. McLachlan, R. Bean and D. Peel. "A mixture model-based approach to the clustering of microarray expression data." Bioinformatics, vol. 18, no. 3, pp. 413-422, 2002.
    • (2002) Bioinformatics , vol.18 , Issue.3 , pp. 413-422
    • McLachlan, G.1    Bean, R.2    Peel, D.3
  • 16
    • 67649271550 scopus 로고    scopus 로고
    • A regularised method for selecting nested groups of relevant genes from microarray data
    • C. De Mol, S. Mosci, M. Traskine and A. Verri. "A regularised method for selecting nested groups of relevant genes from microarray data." Journal of Computational Biology, vol. 16, no. 5, pp. 677-690, 2009.
    • (2009) Journal of Computational Biology , vol.16 , Issue.5 , pp. 677-690
    • De Mol, C.1    Mosci, S.2    Traskine, M.3    Verri, A.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.