메뉴 건너뛰기




Volumn 18, Issue 3, 2011, Pages 565-602

Trace optimization and eigenproblems in dimension reduction methods

Author keywords

Kernel methods; Laplacean eigenmaps; Linear dimension reduction; Locality preserving projections (LPP); Locally linear embedding (LLE); Nonlinear dimension reduction; Principal component analysis; Projection methods

Indexed keywords


EID: 79954475526     PISSN: 10705325     EISSN: 10991506     Source Type: Journal    
DOI: 10.1002/nla.743     Document Type: Article
Times cited : (168)

References (69)
  • 2
    • 35248856354 scopus 로고    scopus 로고
    • On spectral graph drawing
    • LNCS, Springer: Berlin
    • Koren Y. On spectral graph drawing. COCOON 03, LNCS, vol. 2697. Springer: Berlin, 2003; 496-508.
    • (2003) COCOON 03 , vol.2697 , pp. 496-508
    • Koren, Y.1
  • 5
    • 33846210105 scopus 로고    scopus 로고
    • Data-mining-driven quantum mechanics for the prediction of structure
    • Ceder G, Morgan D, Fischer C, Tibbetts K, Curtarolo S. Data-mining-driven quantum mechanics for the prediction of structure. MRS Bulletin 2006; 31:981-985.
    • (2006) MRS Bulletin , vol.31 , pp. 981-985
    • Ceder, G.1    Morgan, D.2    Fischer, C.3    Tibbetts, K.4    Curtarolo, S.5
  • 7
    • 79954558504 scopus 로고    scopus 로고
    • http://www.cs.toronto.edu/~roweis/data.html.
  • 8
    • 39449104740 scopus 로고    scopus 로고
    • Pattern Recognition and Machine Learning
    • Springer: Berlin
    • Bishop CM. Pattern Recognition and Machine Learning. Information Science and Statistics. Springer: Berlin, 2006.
    • (2006) Information Science and Statistics
    • Bishop, C.M.1
  • 9
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by locally linear embedding
    • Roweis S, Saul L. Nonlinear dimensionality reduction by locally linear embedding. Science 2000; 290:2323-2326.
    • (2000) Science , vol.290 , pp. 2323-2326
    • Roweis, S.1    Saul, L.2
  • 11
    • 0042378381 scopus 로고    scopus 로고
    • Laplacian eigenmaps for dimensionality reduction and data representation
    • Belkin M, Niyogi P. Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computation 2003; 15(6):1373-1396.
    • (2003) Neural Computation , vol.15 , Issue.6 , pp. 1373-1396
    • Belkin, M.1    Niyogi, P.2
  • 12
    • 14544307975 scopus 로고    scopus 로고
    • Principal manifolds and nonlinear dimensionality reduction via tangent space alignment
    • Zhang Z, Zha H. Principal manifolds and nonlinear dimensionality reduction via tangent space alignment. SIAM Journal on Scientific Computing 2005; 26(1):313-338.
    • (2005) SIAM Journal on Scientific Computing , vol.26 , Issue.1 , pp. 313-338
    • Zhang, Z.1    Zha, H.2
  • 13
    • 0034704229 scopus 로고    scopus 로고
    • A global geometric framework for nonlinear dimensionality reduction
    • Tenenbaum JB, de Silva V, Langford JC. A global geometric framework for nonlinear dimensionality reduction. Science 2000; 290:2319-2323.
    • (2000) Science , vol.290 , pp. 2319-2323
    • Tenenbaum, J.B.1    de Silva, V.2    Langford, J.C.3
  • 14
    • 5044226695 scopus 로고    scopus 로고
    • Unsupervised learning of image manifolds by semidefinite programming. Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), Washington, DC, U.S.A., 2004.
    • Weinberger KQ, Saul LK. Unsupervised learning of image manifolds by semidefinite programming. Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), Washington, DC, U.S.A., 2004.
    • Weinberger, K.Q.1    Saul, L.K.2
  • 15
    • 31844449616 scopus 로고    scopus 로고
    • Analysis and extension of spectral methods for nonlinear dimensionality reduction. Proceedings of the 22nd International Conference on Machine Learning (ICML), Bonn, Germany, 2005.
    • Sha F, Saul LK. Analysis and extension of spectral methods for nonlinear dimensionality reduction. Proceedings of the 22nd International Conference on Machine Learning (ICML), Bonn, Germany, 2005.
    • Sha, F.1    Saul, L.K.2
  • 16
    • 34548547033 scopus 로고    scopus 로고
    • Orthogonal neighborhood preserving projections
    • Houston, TX, 27-30 November Han J (eds). IEEE: New York
    • Kokiopoulou E, Saad Y. Orthogonal neighborhood preserving projections. In IEEE 5th International Conference on Data Mining (ICDM05), Houston, TX, 27-30 November Han J et al. (eds). IEEE: New York, 2005; 234-241.
    • (2005) IEEE 5th International Conference on Data Mining (ICDM05) , pp. 234-241
    • Kokiopoulou, E.1    Saad, Y.2
  • 18
    • 0036165146 scopus 로고    scopus 로고
    • On a connection between kernel PCA and metric multidimensional scaling
    • Williams CKI. On a connection between kernel PCA and metric multidimensional scaling. Machine Learning 2002; 46(1-3):11-19.
    • (2002) Machine Learning , vol.46 , Issue.1-3 , pp. 11-19
    • Williams, C.K.I.1
  • 21
    • 0346034995 scopus 로고    scopus 로고
    • A generalized Foley-Sammon transform based on generalized Fisher discriminant criterion and its application to face recognition
    • Guo Y-F, Li S-J, Yang J-Y, Shu T-T, Wu L-D. A generalized Foley-Sammon transform based on generalized Fisher discriminant criterion and its application to face recognition. Pattern Recognition Letters 2003; 24(1-3):147-158.
    • (2003) Pattern Recognition Letters , vol.24 , Issue.1-3 , pp. 147-158
    • Guo, Y.-F.1    Li, S.-J.2    Yang, J.-Y.3    Shu, T.-T.4    Wu, L.-D.5
  • 23
    • 49449088902 scopus 로고    scopus 로고
    • Learning a mahalanobis distance metric for data clustering and classification
    • Xiang S, Nie F, Zhang C. Learning a mahalanobis distance metric for data clustering and classification. Pattern Recognition 2008; 41(12):3600-3612.
    • (2008) Pattern Recognition , vol.41 , Issue.12 , pp. 3600-3612
    • Xiang, S.1    Nie, F.2    Zhang, C.3
  • 24
    • 33745829806 scopus 로고    scopus 로고
    • Trace quotient problems revisited
    • In (Lecture Notes in Computer Science), Leonardis A, Bischof H, Pinz A (eds). Springer: Berlin-Heidelberg, Number 3952.
    • Yan S, Tang X. Trace quotient problems revisited. In Proceedings of the European Conference on Computer Vision (Lecture Notes in Computer Science, vol. 2), Leonardis A, Bischof H, Pinz A (eds). Springer: Berlin-Heidelberg, 2006; 232-244, Number 3952.
    • (2006) Proceedings of the European Conference on Computer Vision , vol.2 , pp. 232-244
    • Yan, S.1    Tang, X.2
  • 25
    • 67649427872 scopus 로고    scopus 로고
    • Semi-supervised orthogonal discriminant analysis via label propagation
    • Nie F, Xiang S, Jia Y, Zhang C. Semi-supervised orthogonal discriminant analysis via label propagation. Pattern Recognition 2009; 42:2615-2627.
    • (2009) Pattern Recognition , vol.42 , pp. 2615-2627
    • Nie, F.1    Xiang, S.2    Jia, Y.3    Zhang, C.4
  • 26
    • 2342517502 scopus 로고    scopus 로고
    • Think globally, fit locally: unsupervised learning of nonlinear manifolds
    • Saul L, Roweis S. Think globally, fit locally: unsupervised learning of nonlinear manifolds. Journal of Machine Learning Research 2003; 4:119-155.
    • (2003) Journal of Machine Learning Research , vol.4 , pp. 119-155
    • Saul, L.1    Roweis, S.2
  • 27
    • 84880203756 scopus 로고    scopus 로고
    • Laplacian eigenmaps and spectral techniques for embedding and clustering
    • MIT Press: Cambridge, MA
    • Belkin M, Niyogi P. Laplacian eigenmaps and spectral techniques for embedding and clustering. Advances in Neural Information Processing Systems 14. MIT Press: Cambridge, MA, 2001; 585-591.
    • (2001) Advances in Neural Information Processing Systems 14 , pp. 585-591
    • Belkin, M.1    Niyogi, P.2
  • 28
    • 79954537156 scopus 로고    scopus 로고
    • Locality preserving projections. Proceedings of Conference on Advances in Neural Information Processing Systems, Vancouver, BC, Canada, 2003.
    • He X, Niyogi P. Locality preserving projections. Proceedings of Conference on Advances in Neural Information Processing Systems, Vancouver, BC, Canada, 2003.
    • He, X.1    Niyogi, P.2
  • 29
    • 36248950635 scopus 로고    scopus 로고
    • Orthogonal neighborhood preserving projections: a projection-based dimensionality reduction technique
    • Kokiopoulou E, Saad Y. Orthogonal neighborhood preserving projections: a projection-based dimensionality reduction technique. IEEE TPAMI 2007; 29:2143-2156.
    • (2007) IEEE TPAMI , vol.29 , pp. 2143-2156
    • Kokiopoulou, E.1    Saad, Y.2
  • 31
    • 84950351930 scopus 로고
    • Multidimensional scaling: I. Theory and method
    • Torgerson WS. Multidimensional scaling: I. Theory and method. Psychometrika 1952; 17(4):401-419.
    • (1952) Psychometrika , vol.17 , Issue.4 , pp. 401-419
    • Torgerson, W.S.1
  • 33
    • 3242707002 scopus 로고    scopus 로고
    • Generalizing discriminant analysis using the generalized singular value decomposition
    • Howland P, Park H. Generalizing discriminant analysis using the generalized singular value decomposition. IEEE Transactions on Pattern Analysis and Machine Intelligence 2004; 26(8):995-1006.
    • (2004) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.26 , Issue.8 , pp. 995-1006
    • Howland, P.1    Park, H.2
  • 34
  • 35
    • 49049111209 scopus 로고    scopus 로고
    • Semi-supervised discriminant analysis. IEEE International Conference on Computer Vision (ICCV), Rio de Janeiro, Brazil, 2007.
    • Cai D, He X, Han J. Semi-supervised discriminant analysis. IEEE International Conference on Computer Vision (ICCV), Rio de Janeiro, Brazil, 2007.
    • Cai, D.1    He, X.2    Han, J.3
  • 36
    • 44649132677 scopus 로고    scopus 로고
    • A unified framework for semi-supervised dimensionality reduction
    • Song Y, Nie F, Zhang C, Xiang S. A unified framework for semi-supervised dimensionality reduction. Pattern Recognition 2008; 41:2789-2799.
    • (2008) Pattern Recognition , vol.41 , pp. 2789-2799
    • Song, Y.1    Nie, F.2    Zhang, C.3    Xiang, S.4
  • 37
    • 51949087958 scopus 로고    scopus 로고
    • Semi-supervised discriminant analysis using robust path-based similarity. IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), Anchorage, Alaska, 2008.
    • Zhang Y, Yeung D-Y. Semi-supervised discriminant analysis using robust path-based similarity. IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), Anchorage, Alaska, 2008.
    • Zhang, Y.1    Yeung, D.-Y.2
  • 38
    • 56049095557 scopus 로고    scopus 로고
    • Semi-supervised discriminant analysis via CCCP
    • Zhang Y, Yeung D-Y. Semi-supervised discriminant analysis via CCCP. ECML/PKDD, 2008; 644-659.
    • (2008) ECML/PKDD , pp. 644-659
    • Zhang, Y.1    Yeung, D.-Y.2
  • 39
    • 33749248511 scopus 로고    scopus 로고
    • Semi-supervised nonlinear dimensionality reduction. The 23rd International Conference on Machine Learning (ICML), Pittsburg, PA, U.S.A., 2006.
    • Yang X, Fu H, Zha H, Barlow J. Semi-supervised nonlinear dimensionality reduction. The 23rd International Conference on Machine Learning (ICML), Pittsburg, PA, U.S.A., 2006.
    • Yang, X.1    Fu, H.2    Zha, H.3    Barlow, J.4
  • 40
    • 51949118011 scopus 로고    scopus 로고
    • Spectral methods for semi-supervised manifold learning. IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), Anchorage, Alaska, 2008.
    • Zhang Z, Zha H, Zhang M. Spectral methods for semi-supervised manifold learning. IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), Anchorage, Alaska, 2008.
    • Zhang, Z.1    Zha, H.2    Zhang, M.3
  • 43
    • 79954523078 scopus 로고    scopus 로고
    • Spectral clustering. International Conference on Machine Learning 2004 Tutorial, 2004.
    • Ding C. Spectral clustering. International Conference on Machine Learning 2004 Tutorial, 2004.
    • Ding, C.1
  • 44
    • 34548583274 scopus 로고    scopus 로고
    • A tutorial on spectral clustering
    • Luxburg U. A tutorial on spectral clustering. Statistics and Computing 2007; 17(4):395-416.
    • (2007) Statistics and Computing , vol.17 , Issue.4 , pp. 395-416
    • Luxburg, U.1
  • 47
    • 0000827674 scopus 로고
    • A property of eigenvectors of nonnegative symmetric matrices and its applications to graph theory
    • Fiedler M. A property of eigenvectors of nonnegative symmetric matrices and its applications to graph theory. Czechoslovak Mathematical Journal 1975; 25:619-633.
    • (1975) Czechoslovak Mathematical Journal , vol.25 , pp. 619-633
    • Fiedler, M.1
  • 53
    • 0347243182 scopus 로고    scopus 로고
    • Nonlinear component analysis as a kernel eigenvalue problem
    • Schölkopf B, Smola A, Muller K. Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation 1998; 10:1299-1319.
    • (1998) Neural Computation , vol.10 , pp. 1299-1319
    • Schölkopf, B.1    Smola, A.2    Muller, K.3
  • 54
    • 33847766633 scopus 로고    scopus 로고
    • Random-walk computation of similarities between nodes of a graph with application to collaborative recommendation
    • Fouss F, Pirotte A, Renders J-M, Saerens M. Random-walk computation of similarities between nodes of a graph with application to collaborative recommendation. IEEE Transactions on Knowledge and Data Engineering 2007; 19(3):355-369.
    • (2007) IEEE Transactions on Knowledge and Data Engineering , vol.19 , Issue.3 , pp. 355-369
    • Fouss, F.1    Pirotte, A.2    Renders, J.-M.3    Saerens, M.4
  • 56
    • 22644451496 scopus 로고    scopus 로고
    • Principal direction divisive partitioning
    • Boley D. Principal direction divisive partitioning. Data Mining and Knowledge Discovery 1998; 2(4):325-344.
    • (1998) Data Mining and Knowledge Discovery , vol.2 , Issue.4 , pp. 325-344
    • Boley, D.1
  • 58
    • 79954453403 scopus 로고    scopus 로고
    • UCI machine learning repository (multiple features data set). Available from.
    • Asuncion A, Newman DJ. UCI machine learning repository (multiple features data set). Available from.
    • Asuncion, A.1    Newman, D.J.2
  • 59
  • 60
    • 0028734063 scopus 로고    scopus 로고
    • Parameterisation of a stochastic model for human face identification. The 2nd IEEE Workshop on Applications of Computer Vision, Sarasota FL, December 1994.
    • Samaria F, Harter A. Parameterisation of a stochastic model for human face identification. The 2nd IEEE Workshop on Applications of Computer Vision, Sarasota FL, December 1994.
    • Samaria, F.1    Harter, A.2
  • 61
    • 79954473827 scopus 로고    scopus 로고
    • The AR face database. Technical Report 24, CVC
    • Martinez AM, Benavente R. The AR face database. Technical Report 24, CVC, 1998.
    • (1998)
    • Martinez, A.M.1    Benavente, R.2
  • 63
    • 34249753618 scopus 로고
    • Support-vector networks
    • Cortes C, Vapnik V. Support-vector networks. Machine Learning 1995; 20(3):273-297.
    • (1995) Machine Learning , vol.20 , Issue.3 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 67
    • 29344456217 scopus 로고    scopus 로고
    • Unsupervised and semi-supervised multi-class support vector machines. Proceedings of the 20th National Conference on Artificial Intelligence, Pittsburg, PA, U.S.A., 2005.
    • Xu L, Schuurmans D. Unsupervised and semi-supervised multi-class support vector machines. Proceedings of the 20th National Conference on Artificial Intelligence, Pittsburg, PA, U.S.A., 2005.
    • Xu, L.1    Schuurmans, D.2
  • 69
    • 83855163194 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by semidefinite programming and kernel matrix factorization. Proceedings of the 10th International Workshop on Artificial Intelligence and Statistics, Barbados, 2005.
    • Weinberger K, Packer B, Saul L. Nonlinear dimensionality reduction by semidefinite programming and kernel matrix factorization. Proceedings of the 10th International Workshop on Artificial Intelligence and Statistics, Barbados, 2005.
    • Weinberger, K.1    Packer, B.2    Saul, L.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.