-
1
-
-
0029957181
-
-
C. A. Heid, J. Stevens, K. J. Livak, P. M. Williams, Genome Res. 1996, 6, 986-994;
-
(1996)
Genome Res.
, vol.6
, pp. 986-994
-
-
Heid, C.A.1
Stevens, J.2
Livak, K.J.3
Williams, P.M.4
-
2
-
-
0030934743
-
-
R. Lang, K. Pfeffer, H. Wagner, K. Heeg, J. Immunol. Methods 1997, 203, 181-192;
-
(1997)
J. Immunol. Methods
, vol.203
, pp. 181-192
-
-
Lang, R.1
Pfeffer, K.2
Wagner, H.3
Heeg, K.4
-
5
-
-
0031983834
-
-
S. Tyagi, D. P. Bratu, F. R. Kramer, Nat. Biotechnol. 1998, 16, 49-53.
-
(1998)
Nat. Biotechnol.
, vol.16
, pp. 49-53
-
-
Tyagi, S.1
Bratu, D.P.2
Kramer, F.R.3
-
6
-
-
0025076262
-
-
G. Duck, G. Alvarado-Urbina, B. Burdick, B. Collier, BioTechniques 1990, 9, 142-148;
-
(1990)
BioTechniques
, vol.9
, pp. 142-148
-
-
Duck, G.1
Alvarado-Urbina, G.2
Burdick, B.3
Collier, B.4
-
7
-
-
4644328191
-
-
J. J. Harvey, S. P. Lee, E. K. Chan, J. H. Kim, E.-S. Hwang, C.-Y. Cha, J. R. Knutson, M. K. Han, Anal. Biochem. 2004, 333, 246-255;
-
(2004)
Anal. Biochem.
, vol.333
, pp. 246-255
-
-
Harvey, J.J.1
Lee, S.P.2
Chan, E.K.3
Kim, J.H.4
Hwang, E.-S.5
Cha, C.-Y.6
Knutson, J.R.7
Han, M.K.8
-
8
-
-
44949181985
-
-
J. J. Harvey, S. R. Brant, J. K. Knutson, M. K. Han, J. Clin. Lab. Anal. 2008, 22, 192-203.
-
(2008)
J. Clin. Lab. Anal.
, vol.22
, pp. 192-203
-
-
Harvey, J.J.1
Brant, S.R.2
Knutson, J.K.3
Han, M.K.4
-
9
-
-
0035383109
-
-
M. N. Stojanovic, P. de Prada, D. W. Landry, ChemBioChem 2001, 2, 411-415;
-
(2001)
ChemBioChem
, vol.2
, pp. 411-415
-
-
Stojanovic, M.N.1
de Prada, P.2
Landry, D.W.3
-
10
-
-
0037438523
-
-
A. Saghatelian, K. M. Guckian, D. A. Thayer, M. R. Ghadiri, J. Am. Chem. Soc. 2003, 125, 344-345;
-
(2003)
J. Am. Chem. Soc.
, vol.125
, pp. 344-345
-
-
Saghatelian, A.1
Guckian, K.M.2
Thayer, D.A.3
Ghadiri, M.R.4
-
11
-
-
0345733980
-
-
S. Sando, T. Sasaki, K. Kanatani, Y. Aoyama, J. Am. Chem. Soc. 2003, 125, 15720-15721;
-
(2003)
J. Am. Chem. Soc.
, vol.125
, pp. 15720-15721
-
-
Sando, S.1
Sasaki, T.2
Kanatani, K.3
Aoyama, Y.4
-
12
-
-
2942689259
-
-
Y. Xiao, V. Pavlov, T. Niazov, A. Dishon, M. Kotler, I. Willner, J. Am. Chem. Soc. 2004, 126, 7430-7431;
-
(2004)
J. Am. Chem. Soc.
, vol.126
, pp. 7430-7431
-
-
Xiao, Y.1
Pavlov, V.2
Niazov, T.3
Dishon, A.4
Kotler, M.5
Willner, I.6
-
15
-
-
41849104743
-
-
e.
-
J. J. Li, Y. Chu, B. Y.-H. Lee, X. S. Xie, Nucleic Acids Res. 2008, 36, e36;
-
(2008)
Nucleic Acids Res.
, vol.36
, pp. 36
-
-
Li, J.J.1
Chu, Y.2
Lee, B.Y.-H.3
Xie, X.S.4
-
17
-
-
77249100810
-
-
X. Zuo, F. Xia, Y. Xiao, K. W. Plaxco, J. Am. Chem. Soc. 2010, 132, 1816-1818.
-
(2010)
J. Am. Chem. Soc.
, vol.132
, pp. 1816-1818
-
-
Zuo, X.1
Xia, F.2
Xiao, Y.3
Plaxco, K.W.4
-
18
-
-
2642511314
-
-
H. Esaki, K. Noda, N. Otsuki, A. Kojima, T. Asai, Y. Tamura, T. Takahashi, J. Microbiol. Methods 2004, 58, 131-134;
-
(2004)
J. Microbiol. Methods
, vol.58
, pp. 131-134
-
-
Esaki, H.1
Noda, K.2
Otsuki, N.3
Kojima, A.4
Asai, T.5
Tamura, Y.6
Takahashi, T.7
-
19
-
-
73949123396
-
-
Y. Suzuki, R. Saito, H. Zaraket, C. Dapat, I. Caperig-Dapat, H. Suzuki, J. Clin. Microbiol. 2010, 48, 57-63.
-
(2010)
J. Clin. Microbiol.
, vol.48
, pp. 57-63
-
-
Suzuki, Y.1
Saito, R.2
Zaraket, H.3
Dapat, C.4
Caperig-Dapat, I.5
Suzuki, H.6
-
20
-
-
17644417762
-
-
S. Sando, A. Narita, K. Abe, Y. Aoyama, J. Am. Chem. Soc. 2005, 127, 5300-5301;
-
(2005)
J. Am. Chem. Soc.
, vol.127
, pp. 5300-5301
-
-
Sando, S.1
Narita, A.2
Abe, K.3
Aoyama, Y.4
-
21
-
-
33746191900
-
-
A. Narita, K. Ogawa, S. Sando, Y. Aoyama, Angew. Chem. 2006, 118, 2945-2949; Angew. Chem. Int. Ed. 2006, 45, 2879-2883;
-
(2006)
Angew. Chem. 2006, 118, 2945-2949; Angew. Chem. Int. Ed.
, vol.45
, pp. 2879-2883
-
-
Narita, A.1
Ogawa, K.2
Sando, S.3
Aoyama, Y.4
-
24
-
-
70350542595
-
-
A. Ogawa, ChemBioChem 2009, 10, 2465-2468;
-
(2009)
ChemBioChem
, vol.10
, pp. 2465-2468
-
-
Ogawa, A.1
-
25
-
-
79951519285
-
-
A. Ogawa, RNA 2011, 17, 478-488.
-
(2011)
RNA
, vol.17
, pp. 478-488
-
-
Ogawa, A.1
-
26
-
-
79953678727
-
-
[13]
-
[13]
-
-
-
-
27
-
-
0034681174
-
-
In all experiments described in this manuscript, the preincubation with RNase H, and translation were performed in total volumes of 7.6 and 10 μL, respectively. The unit of RNase H is defined by the manufacturer (Takara Bio). The translation time was set at one hour because it is known that the wheat germ extract used here ceases mRNA translation after 1 hour in a batch reaction, and because a larger amount of the transcribed protein in the -target state is better for detection; see
-
In all experiments described in this manuscript, the preincubation with RNase H, and translation were performed in total volumes of 7.6 and 10 μL, respectively. The unit of RNase H is defined by the manufacturer (Takara Bio). The translation time was set at one hour because it is known that the wheat germ extract used here ceases mRNA translation after 1 hour in a batch reaction, and because a larger amount of the transcribed protein in the -target state is better for detection; see K. Madin, T. Sawasaki, T. Ogasawara, Y. Endo, Proc. Natl. Acad. Sci. USA 2000, 97, 559-564.
-
(2000)
Proc. Natl. Acad. Sci. USA
, vol.97
, pp. 559-564
-
-
Madin, K.1
Sawasaki, T.2
Ogasawara, T.3
Endo, Y.4
-
28
-
-
47049120034
-
-
and references therein.
-
U. Feldkamp, C. M. Niemeyer, Angew. Chem. 2008, 120, 3933-3935; Angew. Chem. Int. Ed. 2008, 47, 3871-3873; and references therein.
-
(2008)
Angew. Chem. 2008, 120, 3933-3935; Angew. Chem. Int. Ed.
, vol.47
, pp. 3871-3873
-
-
Feldkamp, U.1
Niemeyer, C.M.2
-
29
-
-
0029121625
-
-
Incidentally, in a comparison between the same lengths of antisense DNAs, the one lacking the 3' terminus showed a higher inhibitory efficiency. This is probably because a 5'-CAT-3' sequence corresponding to the start codon resides nearer the 5' terminus, and/or because pyrimidine bases (C and T) are concentrated in the 5' terminus. A base pair between a pyrimidine in DNA and a purine base in RNA is stronger than the reverse; see
-
Incidentally, in a comparison between the same lengths of antisense DNAs, the one lacking the 3' terminus showed a higher inhibitory efficiency. This is probably because a 5'-CAT-3' sequence corresponding to the start codon resides nearer the 5' terminus, and/or because pyrimidine bases (C and T) are concentrated in the 5' terminus. A base pair between a pyrimidine in DNA and a purine base in RNA is stronger than the reverse; see E. A. Lesnik, S. M. Freier, Biochemistry 1995, 34, 10807-10815.
-
(1995)
Biochemistry
, vol.34
, pp. 10807-10815
-
-
Lesnik, E.A.1
Freier, S.M.2
-
30
-
-
0030679633
-
-
S. Mummidi, S. S. Ahuja, B. L. McDaniel, S. K. Ahuja, J. Biol. Chem. 1997, 272, 30662-30671.
-
(1997)
J. Biol. Chem.
, vol.272
, pp. 30662-30671
-
-
Mummidi, S.1
Ahuja, S.S.2
McDaniel, B.L.3
Ahuja, S.K.4
-
31
-
-
0025262223
-
-
H. H. Hogrefe, R. I. Hogrefe, R. Y. Walder, J. A. Walder, J. Biol. Chem. 1990, 265, 5561-5566.
-
(1990)
J. Biol. Chem.
, vol.265
, pp. 5561-5566
-
-
Hogrefe, H.H.1
Hogrefe, R.I.2
Walder, R.Y.3
Walder, J.A.4
-
32
-
-
79953714935
-
-
3 cps) can be detected, this translation efficiency is not necessarily low.
-
3 cps) can be detected, this translation efficiency is not necessarily low.
-
-
-
-
33
-
-
79953716317
-
-
This CL ratio hence represents the suppression efficiency of translation.
-
This CL ratio hence represents the suppression efficiency of translation.
-
-
-
-
34
-
-
79953673950
-
-
full (ten- and 33 times smaller than the probe, respectively) can be detected with CL ratios of 5 and 2.5, respectively, by using 1 U of RNase H.
-
full (ten- and 33 times smaller than the probe, respectively) can be detected with CL ratios of 5 and 2.5, respectively, by using 1 U of RNase H.
-
-
-
-
35
-
-
79953690274
-
-
full can be detected with a CL ratio of 41 under the same conditions.
-
full can be detected with a CL ratio of 41 under the same conditions.
-
-
-
-
36
-
-
79953712073
-
-
[13]
-
[13]
-
-
-
-
37
-
-
79953690582
-
-
However, the method did not work well in the detection of the target in human serum (no translation occurred in the absence of the target, probably as a consequence of mRNA degradation). This suggests that samples must be cleaned before detection.
-
However, the method did not work well in the detection of the target in human serum (no translation occurred in the absence of the target, probably as a consequence of mRNA degradation). This suggests that samples must be cleaned before detection.
-
-
-
-
38
-
-
79953691504
-
-
1 fmol mismatched target (1misA, 1misT, or 2mis) showed no translation suppression (CL ratio=1.0) under the same conditions.
-
1 fmol mismatched target (1misA, 1misT, or 2mis) showed no translation suppression (CL ratio=1.0) under the same conditions.
-
-
-
-
39
-
-
79953702600
-
-
[17] This can be attributed to the probe cleaving the mRNA without the target, given the fact that the larger amount of RNase H had almost no effect on translation without the probe (data not shown).
-
[17] This can be attributed to the probe cleaving the mRNA without the target, given the fact that the larger amount of RNase H had almost no effect on translation without the probe (data not shown).
-
-
-
-
40
-
-
79953717802
-
-
full can be detected with a CL ratio of 24 by using 16 U of RNase H. This is 1.5-fold higher than that when using 8 U of RNase H.
-
full can be detected with a CL ratio of 24 by using 16 U of RNase H. This is 1.5-fold higher than that when using 8 U of RNase H.
-
-
-
-
41
-
-
79953726805
-
-
2=0.998).
-
2=0.998).
-
-
-
-
42
-
-
79953694253
-
-
Note
-
A larger amount of target might be detected with shorter incubation time.
-
-
-
|