-
3
-
-
66249097058
-
-
a) J. Liu, Z. Cao, Y. Lu, Chem. Rev. 2009, 109, 1948-1998;
-
(2009)
Chem. Rev.
, vol.109
, pp. 1948-1998
-
-
Liu, J.1
Cao, Z.2
Lu, Y.3
-
5
-
-
34548331295
-
-
Angew. Chem. Int. Ed. 2007, 46, 6408-6418;
-
(2007)
Angew. Chem. Int. Ed.
, vol.46
, pp. 6408-6418
-
-
-
7
-
-
60549087743
-
-
d) N. Muranaka, V. Sharma, Y. Nomura, Y. Yokobayashi, Anal. Lett. 2009, 42, 108-122.
-
(2009)
Anal. Lett.
, vol.42
, pp. 108-122
-
-
Muranaka, N.1
Sharma, V.2
Nomura, Y.3
Yokobayashi, Y.4
-
8
-
-
0035070585
-
-
a) S. Seetharaman, M. Zivarts, N. Sudarsan and R. R. Breaker, Nat. Biotechnol. 2001, 19, 336-341;
-
(2001)
Nat. Biotechnol.
, vol.19
, pp. 336-341
-
-
Seetharaman, S.1
Zivarts, M.2
Sudarsan, N.3
Breaker, R.R.4
-
10
-
-
0036795275
-
-
c) P. T. Sekella, D. Rueda, N. G. Walter, RNA 2002, 8, 1242-1252;
-
(2002)
RNA
, vol.8
, pp. 1242-1252
-
-
Sekella, P.T.1
Rueda, D.2
Walter, N.G.3
-
12
-
-
29144443905
-
-
e) S. Cho, J.-E. Kim, B.-R. Lee, J.-H. Kim, B.-G. Kim, Nucleic Acids Res. 2005, 33, e177;
-
(2005)
Nucleic Acids Res
, vol.33
-
-
Cho, S.1
Kim, J.-E.2
Lee, B.-R.3
Kim, J.-H.4
Kim, B.-G.5
-
13
-
-
33845593101
-
-
f) S. M. Knudsen, J. Lee, A. D. Ellington, C. A. Savran, J. Am. Chem. Soc. 2006, 128, 15936-15937;
-
(2006)
J. Am. Chem. Soc.
, vol.128
, pp. 15936-15937
-
-
Knudsen, S.M.1
Lee, J.2
Ellington, A.D.3
Savran, C.A.4
-
18
-
-
0642367619
-
-
a) K. M. Thompson, H. A. Syrett, S. M. Knudsen, A. D. Ellington, BMC Biotechnol. 2002, 2, 21;
-
(2002)
BMC Biotechnol
, vol.2
, pp. 21
-
-
Thompson, K.M.1
Syrett, H.A.2
Knudsen, S.M.3
Ellington, A.D.4
-
19
-
-
4644275337
-
-
b) L. Yen, J. Svendsen, J.-S. Lee, J. T. Gray, M. Magnier, T. Baba, R. J. D'Amato, R. C. Mulligan, Nature 2004, 431, 471-476;
-
(2004)
Nature
, vol.431
, pp. 471-476
-
-
Yen, L.1
Svendsen, J.2
Lee, J.-S.3
Gray, J.T.4
Magnier, M.5
Baba, T.6
D'Amato, R.J.7
Mulligan, R.C.8
-
24
-
-
41949098095
-
-
Angew. Chem. Int. Ed. 2008, 47, 2604-2607;
-
(2008)
Angew. Chem. Int. Ed.
, vol.47
, pp. 2604-2607
-
-
-
26
-
-
70350548721
-
-
h) M. Wieland, A. Benz, B. Klauser, J. S. Hartig, Angew. Chem. 2009, 121, 2753-2756;
-
(2009)
Angew. Chem.
, vol.121
, pp. 2753-2756
-
-
Wieland, M.1
Benz, A.2
Klauser, B.3
Hartig, J.S.4
-
27
-
-
65249122814
-
-
Angew. Chem. Int. Ed. 2009, 48, 2715-2718.
-
(2009)
Angew. Chem. Int. Ed.
, vol.48
, pp. 2715-2718
-
-
-
28
-
-
0034681174
-
-
K. Madin, T. Sawasaki, T. Ogasawara, Y. Endo, Proc. Natl. Acad. Sci. USA 2000, 97, 559-564.
-
(2000)
Proc. Natl. Acad. Sci. USA
, vol.97
, pp. 559-564
-
-
Madin, K.1
Sawasaki, T.2
Ogasawara, T.3
Endo, Y.4
-
29
-
-
0037069324
-
-
5′-Cap-free mRNA with 5′-GAA is translated as efficiently as 5′-capped mRNA according to the following literature:
-
5′-Cap-free mRNA with 5′-GAA is translated as efficiently as 5′-capped mRNA according to the following literature: a) T. Sawasaki, T. Ogasawara, R. Morishita, Y. Endo, Proc. Natl. Acad. Sci. USA 2002, 99, 14652-14657;
-
(2002)
Proc. Natl. Acad. Sci. USA
, vol.99
, pp. 14652-14657
-
-
Sawasaki, T.1
Ogasawara, T.2
Morishita, R.3
Endo, Y.4
-
30
-
-
27644468401
-
-
b) N. Kamura, T. Sawasaki, Y. Kasahara, K. Takai, Y. Endo, Bioorg. Med. Chem. Lett. 2005, 15, 5402-5406.
-
(2005)
Bioorg. Med. Chem. Lett.
, vol.15
, pp. 5402-5406
-
-
Kamura, N.1
Sawasaki, T.2
Kasahara, Y.3
Takai, K.4
Endo, Y.5
-
31
-
-
0034640131
-
-
G. A. Soukup, G. A. M. Emilsson, R. R. Breaker, J. Mol. Biol. 2000, 298, 623-632.
-
(2000)
J. Mol. Biol.
, vol.298
, pp. 623-632
-
-
Soukup, G.A.1
Emilsson, G.A.M.2
Breaker, R.R.3
-
32
-
-
70350557968
-
-
Because the theophylline-dependent aptazyme originally has mSTART and mSTOP, mSTART was mutated from AUG to AAG to construct a mSTART-free aptazyme. Incidentally, AUG (mSTART) resides in a core of hammer-head ribozyme. Therefore, all aptazymes based on hammer-head ribozyme have mSTART
-
Because the theophylline-dependent aptazyme originally has mSTART and mSTOP, mSTART was mutated from AUG to AAG to construct a mSTART-free aptazyme. Incidentally, AUG (mSTART) resides in a core of hammer-head ribozyme. Therefore, all aptazymes based on hammer-head ribozyme have mSTART.
-
-
-
-
33
-
-
70350541412
-
-
This slight suppression effect is probably due to the greater elongation of the 5′-terminal duplex as compared to mRNA 4 upon duplex formation rather than the 5′-side of E01 forming a duplex (see Figure S1)
-
This slight suppression effect is probably due to the greater elongation of the 5′-terminal duplex as compared to mRNA 4 upon duplex formation rather than the 5′-side of E01 forming a duplex (see Figure S1).
-
-
-
-
34
-
-
33846094478
-
-
It should be noted that this mSTART resides in a weak context, so that the mimic gene effect is somewhat small. See the following reference regarding translation of an upstream open reading frame in a weak context using wheat germ extract
-
It should be noted that this mSTART resides in a weak context, so that the mimic gene effect is somewhat small. See the following reference regarding translation of an upstream open reading frame in a weak context using wheat germ extract: O. David-Assael, H. Saul, K. Mizrahi, E. Leviad, T. Mizrachy-Dagri, E. Brook, I. Berezin, O. Shaul, Plant Sci. 2007, 172, 354-362.
-
(2007)
Plant Sci
, vol.172
, pp. 354-362
-
-
David-Assael, O.1
Saul, H.2
Mizrahi, K.3
Leviad, E.4
Mizrachy-Dagri, T.5
Brook, E.6
Berezin, I.7
Shaul, O.8
-
35
-
-
70350546623
-
-
I verified that theophylline did not significantly affect the translation efficiency using nonfused mRNA 1
-
I verified that theophylline did not significantly affect the translation efficiency using nonfused mRNA 1.
-
-
-
-
36
-
-
70350522369
-
-
[5c]
-
[5c]
-
-
-
-
37
-
-
0035001974
-
-
G. A. Soukup, E. C. DeRose, M. Koizumi, R. R. Breaker, RNA 2001, 7, 524-536.
-
(2001)
RNA
, vol.7
, pp. 524-536
-
-
Soukup, G.A.1
Derose, E.C.2
Koizumi, M.3
Breaker, R.R.4
-
38
-
-
70350550850
-
-
[9]
-
[9]
-
-
-
-
39
-
-
70350557969
-
-
In the present method, aptazyme reactions and translation are performed separately (like mRNA splicing and translation occurring in different places in eukaryotic cells). Thus, aptazyme reactions can be carried out under optimized conditions. This is one of the reasons for the high translation efficiency in the ON state. In contrast, in the previous method, although these processes occur simultaneously, separation of the aptazyme reaction from translation does not appear to significantly affect the ON/OFF translation efficiencies. This, therefore, does not explain the higher sensitivity of this new method
-
In the present method, aptazyme reactions and translation are performed separately (like mRNA splicing and translation occurring in different places in eukaryotic cells). Thus, aptazyme reactions can be carried out under optimized conditions. This is one of the reasons for the high translation efficiency in the ON state. In contrast, in the previous method, although these processes occur simultaneously, separation of the aptazyme reaction from translation does not appear to significantly affect the ON/OFF translation efficiencies. This, therefore, does not explain the higher sensitivity of this new method.
-
-
-
|