메뉴 건너뛰기




Volumn 15, Issue 2, 2011, Pages 251-276

Exploring discrepancies in findings obtained with the KDD Cup '99 data set

Author keywords

intrusion detection; KDD Cup '99 data set; Machine learning; methodology

Indexed keywords

DATA SETS; EMPIRICAL INVESTIGATION; INTRUSION DETECTION SYSTEMS; KDD CUP '99 DATA SET; MACHINE-LEARNING; METHODOLOGY; ON-MACHINES; UNDERLYING CAUSE;

EID: 79953303626     PISSN: 1088467X     EISSN: 15714128     Source Type: Journal    
DOI: 10.3233/IDA-2010-0466     Document Type: Article
Times cited : (35)

References (90)
  • 1
    • 34247500449 scopus 로고    scopus 로고
    • Efficacy of Hidden Markov Models over neural networks in anomaly intrusion detection
    • DOI 10.1109/COMPSAC.2006.40, 4020093, Proceedings - 30th Annual International Computer Software and Applications Conference, COMPSAC 2006
    • M. AlSubaie andM. Zulkernine, Efficacy of HiddenMarkovModels Over Neural Networks in Anomaly Intrusion Detection. In 30th Annual International Computer Software and Applications Conference (COMPSAC'06), 2006, pages 325- 332. (Pubitemid 46661664)
    • (2006) Proceedings - International Computer Software and Applications Conference , vol.1 , pp. 325-332
    • Al-Subaie, M.1    Zulkernine, M.2
  • 2
    • 0016556021 scopus 로고
    • A new approach to manipulator control: The cerebellar model articulation controller (cmac)
    • J. Albus, A new approach to manipulator control: The cerebellar model articulation controller (cmac), Transactions ASME, Journal Dynamic Systems, Measurement, and Control 97 (1975), 220-227.
    • (1975) Transactions ASME, Journal Dynamic Systems, Measurement, and Control , vol.97 , pp. 220-227
    • Albus, J.1
  • 9
    • 85054937066 scopus 로고    scopus 로고
    • Kdd cup '99 dataset (network intrusion) considered harmful
    • n18(item4) September. Available online [Accessed November 23 2007]
    • T. Brugger, Kdd cup '99 dataset (network intrusion) considered harmful. KDnuggets, n18(item4), September 2007. Available online: [http://www.kdnuggets. com/news/2007/n18/4i.html] [Accessed November 23 2007].
    • (2007) KDnuggets
    • Brugger, T.1
  • 11
    • 58349098976 scopus 로고    scopus 로고
    • Handling class imbalance in customer churn prediction
    • April
    • J. Burez and D. van den Poel, Handling Class Imbalance in Customer Churn Prediction, Expert Systems with Applications 36(3) (April 2009), 4626-4636.
    • (2009) Expert Systems with Applications , vol.36 , Issue.3 , pp. 4626-4636
    • Burez, J.1    Van Den Poel, D.2
  • 13
    • 68549121111 scopus 로고    scopus 로고
    • C4.5 and Imbalanced Data sets: Investigating the effect of sampling method, probabilistic estimate, and decision tree structure
    • N.V. Chawla, C4.5 and Imbalanced Data sets: Investigating the effect of sampling method, probabilistic estimate, and decision tree structure. In Workshop on Learning from Imbalanced Datasets II, ICML, 2003.
    • (2003) Workshop on Learning from Imbalanced Datasets II, ICML
    • Chawla, N.V.1
  • 14
    • 19944364877 scopus 로고    scopus 로고
    • Feature deduction and ensemble design of intrusion detection systems
    • DOI 10.1016/j.cose.2004.09.008, PII S016740480400238X
    • S. Chebrolu, A. Abraham and J.P. Thomas, Feature Deduction and Ensemble Design of Intrusion Detection Systems, Computers and Security 24(4) (June 2005), 295-307. (Pubitemid 40752313)
    • (2005) Computers and Security , vol.24 , Issue.4 , pp. 295-307
    • Chebrolu, S.1    Abraham, A.2    Thomas, J.P.3
  • 20
    • 0033293396 scopus 로고    scopus 로고
    • Towards a taxonomy of intrusion detection systems
    • H. Debar, M. Dacier and A. Wespi, Towards a Taxonomy of Intrusion Detection Systems Computer Networks 31(9) (1999), 805-822.
    • (1999) Computer Networks , vol.31 , Issue.9 , pp. 805-822
    • Debar, H.1    Dacier, M.2    Wespi, A.3
  • 22
    • 25844491810 scopus 로고    scopus 로고
    • An intelligent intrusion detection system (IDS) for anomaly and misuse detection in computer networks
    • DOI 10.1016/j.eswa.2005.05.002, PII S0957417405000989
    • O. Depren, M. Topallar, E. Anarim and M.K. Ciliz, An Intelligent Intrusion Detection System for Anomaly and Misuse Detection in Computer Networks, Expert systems with Applications 29 (2005), 713-722. (Pubitemid 41394445)
    • (2005) Expert Systems with Applications , vol.29 , Issue.4 , pp. 713-722
    • Depren, O.1    Topallar, M.2    Anarim, E.3    Ciliz, M.K.4
  • 25
    • 0038428854 scopus 로고    scopus 로고
    • Results of the KDD'99 classifier learning
    • C. Elkan, Results of the KDD'99 classifier learning, SIGKDD Explor Newsl 1(2) (2000), 63-64.
    • (2000) SIGKDD Explor Newsl , vol.1 , Issue.2 , pp. 63-64
    • Elkan, C.1
  • 30
    • 35348821822 scopus 로고    scopus 로고
    • Intrusion detection in computer networks by a modular ensemble of one-class classifiers
    • DOI 10.1016/j.inffus.2006.10.002, PII S1566253506000765, Applications of Ensemble Methods
    • G. Giachinto, R. Perdisci, M. Del Rio and F. Roli, Intrusion detection in computer networks by a modular ensemble of oneclass classifiers, Information Fusion 9 (2008), 69-82. (Pubitemid 47589059)
    • (2008) Information Fusion , vol.9 , Issue.1 , pp. 69-82
    • Giacinto, G.1    Perdisci, R.2    Del Rio, M.3    Roli, F.4
  • 33
    • 33646142788 scopus 로고    scopus 로고
    • Evaluation of neural networks and data mining methods on a credit assessment task for class imbalance problem
    • Y.M. Huang, C.M. Hung and H.C. Jiau, Evaluation of neural networks and data mining methods on a credit assessment task for class imbalance problem, Nonlinear Analysis: Real World Applications 7(4) (2006),720-747.
    • (2006) Nonlinear Analysis: Real World Applications , vol.7 , Issue.4 , pp. 720-747
    • Huang, Y.M.1    Hung, C.M.2    Jiau, H.C.3
  • 34
    • 0027150412 scopus 로고
    • USTAT: A real time intrusion detection system for UNIX
    • Washington, DC, USA. IEEE Computer Society
    • K. Ilgun, USTAT: A Real Time Intrusion Detection System for UNIX. In SP '93: Proceedings of the 1993 IEEE Symposium on Security and Privacy, Washington, DC, USA, 1993, page 16. IEEE Computer Society.
    • (1993) SP '93: Proceedings of the 1993 IEEE Symposium on Security and Privacy , pp. 16
    • Ilgun, K.1
  • 35
    • 0029267472 scopus 로고
    • State transition analysis: A rule based intrusion detection approach
    • K. Ilgun, R.A. Kemmerer and P.A. Porras, State Transition Analysis: A Rule Based Intrusion Detection Approach, Software Engineering 21(3) (1995), 181-199.
    • (1995) Software Engineering , vol.21 , Issue.3 , pp. 181-199
    • Ilgun, K.1    Kemmerer, R.A.2    Porras, P.A.3
  • 38
    • 27144540575 scopus 로고    scopus 로고
    • Class imbalances versus small disjuncts
    • T. Jo and N. Japkowicz, Class Imbalances versus Small Disjuncts, SIGKDD Explorations 6(1) (2004), 40-49.
    • (2004) SIGKDD Explorations , vol.6 , Issue.1 , pp. 40-49
    • Jo, T.1    Japkowicz, N.2
  • 40
    • 85156223398 scopus 로고    scopus 로고
    • A bound on the error of cross validation using the approximation and estimation rates, with consequences for the trainingtest split
    • The MIT Press
    • M. Kearns, A Bound on the Error of Cross Validation Using the Approximation and Estimation Rates, with Consequences for the TrainingTest Split. In Advances in Neural Information Processing Systems 8, The MIT Press, 1996, pages 183- 189.
    • (1996) Advances in Neural Information Processing Systems , vol.8 , pp. 183-189
    • Kearns, M.1
  • 41
    • 0037002475 scopus 로고    scopus 로고
    • Intrusion detection: A brief history and overview
    • R.A. Kemmerer and G. Vigna, Intrusion detection: A brief history and overview, Security &Privacy 35(4) (2002), 27-30.
    • (2002) Security & Privacy , vol.35 , Issue.4 , pp. 27-30
    • Kemmerer, R.A.1    Vigna, G.2
  • 44
    • 84901408225 scopus 로고    scopus 로고
    • Towards artificial immune systems for network intrusion detection: An investigation of dynamic clonal selection
    • G.H. Kim and P.J. Bentley, Towards Artificial Immune Systems for Network Intrusion Detection: An Investigation of Dynamic Clonal Selection. In Proceedings of the Congress on Evolutionary Computation, 2002.
    • (2002) Proceedings of the Congress on Evolutionary Computation
    • Kim, G.H.1    Bentley, P.J.2
  • 49
    • 34249873596 scopus 로고    scopus 로고
    • Efficient back prop
    • this book is an outgrowth of a 1996 NIPS workshop, London, UK. Springer Verlag
    • Y. Le Cun, L. Bottou, G.B. Orr and K.R. Mueller, Efficient Back Prop. In Neural Networks: Tricks of the Trade, this book is an outgrowth of a 1996 NIPS workshop, London, UK, 1998, pages 9-50. Springer Verlag.
    • (1998) Neural Networks: Tricks of the Trade , pp. 9-50
    • Le Cun, Y.1    Bottou, L.2    Orr, G.B.3    Mueller, K.R.4
  • 50
    • 84885774862 scopus 로고    scopus 로고
    • A framework for constructing features and models for intrusion detection systems
    • W. Lee and S.J. Stolfo, A Framework for Constructing Features and Models for Intrusion Detection Systems, ACM Transactions on Information and System Security 3(4) (2000), 227-261.
    • (2000) ACM Transactions on Information and System Security , vol.3 , Issue.4 , pp. 227-261
    • Lee, W.1    Stolfo, S.J.2
  • 51
    • 0034836392 scopus 로고    scopus 로고
    • Information theoretic measures for anomaly detection
    • Oakland, CA May
    • W. Lee and D. Xiang, Information Theoretic Measures for Anomaly Detection. In IEEE Symposium on Security and Privacy, Oakland, CA, May 2001.
    • (2001) IEEE Symposium on Security and Privacy
    • Lee, W.1    Xiang, D.2
  • 52
    • 84868695480 scopus 로고    scopus 로고
    • Unsupervised anomaly detection in network intrusion detection using clusters
    • Darlinghurst, Australia, Australia. Australian Computer Society, Inc
    • K. Leung and C. Leckie, Unsupervised anomaly detection in network intrusion detection using clusters. In ACSC '05: Proceedings of the 28th Australasian conference on Computer Science, Darlinghurst, Australia, Australia, 2005, pages 333-342. Australian Computer Society, Inc.
    • (2005) ACSC '05: Proceedings of the 28th Australasian conference on Computer Science , pp. 333-342
    • Leung, K.1    Leckie, C.2
  • 54
    • 0032630098 scopus 로고    scopus 로고
    • Detecting computer and network misuse through the production based expert system toolset (PBEST)
    • U. Lindqvist and P.A. Porras, Detecting Computer and Network Misuse Through the Production Based Expert System Toolset (PBEST). In IEEE Symposium on Security and Privacy, 1999, pages 146-161.
    • (1999) IEEE Symposium on Security and Privacy , pp. 146-161
    • Lindqvist, U.1    Porras, P.A.2
  • 57
  • 59
    • 40649126091 scopus 로고    scopus 로고
    • Training neural network classifiers for medical decision making: The effects of imbalanced datasets on classification performance
    • M.A. Mazurowski, P.A. Habas, J.M. Zurada, J.Y. Lo, J.A. Baker and G.D. Tourassi. Training neural network classifiers for medical decision making: The effects of imbalanced datasets on classification performance, Neural Networks 21(2-3) (2008), 427-436.
    • (2008) Neural Networks , vol.21 , Issue.2-3 , pp. 427-436
    • Mazurowski, M.A.1    Habas, P.A.2    Zurada, J.M.3    Lo, J.Y.4    Baker, J.A.5    Tourassi, G.D.6
  • 60
    • 85019691440 scopus 로고    scopus 로고
    • Testing intrusion detection systems: A critique of the 1998 and 1999 darpa intrusion detection system evaluations as performed by lincoln laboratory
    • J. McHugh, Testing intrusion detection systems: A critique of the 1998 and 1999 darpa intrusion detection system evaluations as performed by lincoln laboratory, ACM Transactions on Information and System Security 3(4) (2000), 262-294.
    • (2000) ACM Transactions on Information and System Security , vol.3 , Issue.4 , pp. 262-294
    • McHugh, J.1
  • 64
    • 0003993827 scopus 로고    scopus 로고
    • MIT Lincoln Labratory Available online
    • MIT Lincoln Labratory, DARPA Intrusion Detection Evaluation Data Sets, 2000. Available online: [http://www.ll.mit. edu/IST/ideval/data/data index.html].
    • (2000) DARPA Intrusion Detection Evaluation Data Sets
  • 66
    • 0038458226 scopus 로고    scopus 로고
    • Identifying key features for intrusion detection using neural networks
    • Washington, DC, USA. International Council for Computer Communication
    • S. Mukkamala and A.H. Sung, Identifying Key Features for Intrusion Detection Using Neural Networks. In ICCC '02: Proceedings of the 15th international conference on Computer communication, Washington, DC, USA, 2002, pages 1132-1138. International Council for Computer Communication.
    • (2002) ICCC '02: Proceedings of the 15th International Conference on Computer Communication , pp. 1132-1138
    • Mukkamala, S.1    Sung, A.H.2
  • 71
    • 33750514606 scopus 로고    scopus 로고
    • Modeling intrusion detection system using hybrid intelligent systems
    • DOI 10.1016/j.jnca.2005.06.003, PII S1084804505000445, Network and Information Security: A Computational Intelligence Approach
    • S. Peddabachigari,A.Abraham, C.Grosan and J.Thomas,Modeling Intrusion Detection Systems Using Hybrid Intelligent Systems, Journal of Network and Computer Applications 30(1) (January 2007), 114-132. (Pubitemid 44666486)
    • (2007) Journal of Network and Computer Applications , vol.30 , Issue.1 , pp. 114-132
    • Peddabachigari, S.1    Abraham, A.2    Grosan, C.3    Thomas, J.4
  • 74
    • 0024610919 scopus 로고
    • A tutorial on hidden markov models and selected applications in speech recognition
    • L.R. Rabiner, A tutorial on hidden markov models and selected applications in speech recognition, Proceedings of the IEEE 77(2) (1989), 257-286.
    • (1989) Proceedings of the IEEE , vol.77 , Issue.2 , pp. 257-286
    • Rabiner, L.R.1
  • 77
    • 49649112245 scopus 로고    scopus 로고
    • Why machine learning algorithms fail in misuse detection on kdd intrusion detection data set
    • M. Sabhnani and G. Serpen, Why machine learning algorithms fail in misuse detection on kdd intrusion detection data set, Intelligent Data Analysis 8(4) (2004), 403-415.
    • (2004) Intelligent Data Analysis , vol.8 , Issue.4 , pp. 403-415
    • Sabhnani, M.1    Serpen, G.2
  • 78
    • 39649105441 scopus 로고    scopus 로고
    • Author identification: Using text sampling to handle the class imbalance problem
    • DOI 10.1016/j.ipm.2007.05.012, PII S0306457307001197
    • E. Stamatatos, Author identification: Using text sampling to handle the class imbalance problem, Information Processing and Management 44(2) (2008), 790-799. (Pubitemid 351288480)
    • (2008) Information Processing and Management , vol.44 , Issue.2 , pp. 790-799
    • Stamatatos, E.1
  • 79
    • 84943383590 scopus 로고    scopus 로고
    • Identifying important features for intrusion detection using support vector machines and neural networks
    • Washington, DC, USA IEEE Computer Society
    • A.H. Sung and S. Mukkamala, Identifying Important Features for Intrusion Detection Using Support Vector Machines and Neural Networks. In SAINT '03: Proceedings of the 2003 Symposium on Applications and the Internet, Washington, DC, USA, 2003, pages 209-216. IEEE Computer Society.
    • (2003) SAINT '03: Proceedings of the 2003 Symposium on Applications and the Internet , pp. 209-216
    • Sung, A.H.1    Mukkamala, S.2
  • 80
    • 58549089680 scopus 로고    scopus 로고
    • Intrusion detection using fuzzy association rules
    • A. Tajbakhsh, M. Rahmati and A. Mirzaei, Intrusion detection using fuzzy association rules, Appl Soft Comput 9(2) (2009), 462-469.
    • (2009) Appl Soft Comput , vol.9 , Issue.2 , pp. 462-469
    • Tajbakhsh, A.1    Rahmati, M.2    Mirzaei, A.3
  • 81
    • 34247641064 scopus 로고    scopus 로고
    • The UCI KDD Archive. Available online
    • The UCI KDD Archive, Kdd cup '99 data set, 1999. Available online: [http://kdd.ics.uci.edu/databases/kddcup99/ kddcup99.html].
    • (1999) Kdd Cup '99 Data Set
  • 83
    • 37049002837 scopus 로고    scopus 로고
    • Processing of massive audit data streams for real-time anomaly intrusion detection
    • DOI 10.1016/j.comcom.2007.10.010, PII S0140366407004045
    • W. Wang, X. Guan and X. Zhang, Processing of massive audit data streams for realtime anomaly intrusion detection, Comput Commun 31(1) (2008), 58-72. (Pubitemid 350251566)
    • (2008) Computer Communications , vol.31 , Issue.1 , pp. 58-72
    • Wang, W.1    Guan, X.2    Zhang, X.3
  • 87
    • 40849099949 scopus 로고    scopus 로고
    • Design of multiplelevel hybrid classifier for intrusion detection system using Bayesian clustering and decision trees
    • C. Xiang, P.C. Yong and L.S. Meng, Design of multiplelevel hybrid classifier for intrusion detection system using Bayesian clustering and decision trees, Pattern Recogn Lett 29(7) (2008), 918-924.
    • (2008) Pattern Recogn Lett , vol.29 , Issue.7 , pp. 918-924
    • Xiang, C.1    Yong, P.C.2    Meng, L.S.3
  • 88
    • 58349116623 scopus 로고    scopus 로고
    • Customer churn prediction using improved balanced random forests
    • Y. Xie, X. Li, E.W.T. Ngai and W. Ying, Customer Churn Prediction using Improved Balanced Random Forests, Expert Systems with Applications 36(3) (2009), 5445-5449.
    • (2009) Expert Systems with Applications , vol.36 , Issue.3 , pp. 5445-5449
    • Xie, Y.1    Li, X.2    Ngai, E.W.T.3    Ying, W.4
  • 89
    • 44349093006 scopus 로고    scopus 로고
    • Learning from imbalanced data: A comparative study for colon CAD
    • Presented at the Society of PhotoOptical Instrumentation Engineers (SPIE) Conference, April
    • X. Yang, Y. Zheng, M. Siddique and G. Beddoe, Learning from imbalanced data: A comparative study for colon CAD. In Society of PhotoOptical Instrumentation Engineers (SPIE) Conference Series, volume 6915 of Presented at the Society of PhotoOptical Instrumentation Engineers (SPIE) Conference, April 2008.
    • (2008) Society of PhotoOptical Instrumentation Engineers (SPIE) Conference Series , vol.6915
    • Yang, X.1    Zheng, Y.2    Siddique, M.3    Beddoe, G.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.