메뉴 건너뛰기




Volumn 108, Issue 5, 2011, Pages 1159-1170

Optimizing the medium perfusion rate in bone tissue engineering bioreactors

Author keywords

Bioreactor; Bone; Perfusion; Tissue engineering

Indexed keywords

BONE CONSTRUCTS; BONE TISSUE ENGINEERING; BONE-LIKE TISSUE; CELL MORPHOLOGY; CELL-CELL INTERACTION; CELLULAR PHENOTYPES; CELLULAR RESPONSE; EVALUATION PARAMETERS; GAS TRANSFER; HYDRODYNAMIC SHEAR; IN-VITRO; INITIAL SHEAR STRESS; MATRIX; OSTEOGENIC; OSTEOGENIC RESPONSE; PERFUSION; PERFUSION BIOREACTOR; PERFUSION RATE; REGENERATIVE MEDICINE; SIZE OF BONE; STATIC CULTURE;

EID: 79953127869     PISSN: 00063592     EISSN: 10970290     Source Type: Journal    
DOI: 10.1002/bit.23024     Document Type: Article
Times cited : (134)

References (42)
  • 2
    • 41849128809 scopus 로고    scopus 로고
    • Flow perfusion culture of human mesenchymal stem cells on silicate-substituted tricalcium phosphate scaffolds
    • Bjerre L, Bunger CE, Kassem M, Mygind T. 2008. Flow perfusion culture of human mesenchymal stem cells on silicate-substituted tricalcium phosphate scaffolds. Biomaterials 29(17): 2616-2627.
    • (2008) Biomaterials , vol.29 , Issue.17 , pp. 2616-2627
    • Bjerre, L.1    Bunger, C.E.2    Kassem, M.3    Mygind, T.4
  • 3
    • 0345015415 scopus 로고    scopus 로고
    • Effects of medium perfusion rate on cell-seeded three-dimensional bone constructs in vitro
    • Cartmell SH, Porter BD, Garcia AJ, Guldberg RE. 2003. Effects of medium perfusion rate on cell-seeded three-dimensional bone constructs in vitro. Tissue Eng 9(6): 1197-1203.
    • (2003) Tissue Eng , vol.9 , Issue.6 , pp. 1197-1203
    • Cartmell, S.H.1    Porter, B.D.2    Garcia, A.J.3    Guldberg, R.E.4
  • 4
    • 0034907844 scopus 로고    scopus 로고
    • Modeling pO(2) distributions in the bone marrow hematopoietic compartment. I. Krogh's model
    • Chow DC, Wenning LA, Miller WM, Papoutsakis ET. 2001. Modeling pO(2) distributions in the bone marrow hematopoietic compartment. I. Krogh's model. Biophys J 81(2): 675-684.
    • (2001) Biophys J , vol.81 , Issue.2 , pp. 675-684
    • Chow, D.C.1    Wenning, L.A.2    Miller, W.M.3    Papoutsakis, E.T.4
  • 5
    • 32544432849 scopus 로고    scopus 로고
    • Modeling evaluation of the fluid-dynamic microenvironment in tissue-engineered constructs: A micro-CT based model
    • Cioffi M, Boschetti F, Raimondi MT, Dubini G. 2006. Modeling evaluation of the fluid-dynamic microenvironment in tissue-engineered constructs: A micro-CT based model. Biotechnol Bioeng 93(3): 500-510.
    • (2006) Biotechnol Bioeng , vol.93 , Issue.3 , pp. 500-510
    • Cioffi, M.1    Boschetti, F.2    Raimondi, M.T.3    Dubini, G.4
  • 6
    • 33845335851 scopus 로고    scopus 로고
    • Mathematical modeling of three-dimensional cell cultures in perfusion bioreactors
    • Coletti F, Macchietto S, Elvassore N. 2006. Mathematical modeling of three-dimensional cell cultures in perfusion bioreactors. Ind Eng Chem Res 45(24): 8158-8169.
    • (2006) Ind Eng Chem Res , vol.45 , Issue.24 , pp. 8158-8169
    • Coletti, F.1    Macchietto, S.2    Elvassore, N.3
  • 7
    • 75249104609 scopus 로고    scopus 로고
    • Computational modeling of cell growth heterogeneity in a perfused 3D scaffold
    • Flaibani M, Magrofuoco E, Elvassore N. 2010. Computational modeling of cell growth heterogeneity in a perfused 3D scaffold. Ind Eng Chem Res 49(2): 859-869.
    • (2010) Ind Eng Chem Res , vol.49 , Issue.2 , pp. 859-869
    • Flaibani, M.1    Magrofuoco, E.2    Elvassore, N.3
  • 9
    • 0031844799 scopus 로고    scopus 로고
    • Perfusion enhances functions of bone marrow stromal cells in three-dimensional culture
    • Glowacki J, Mizuno S, Greenberger JS. 1998. Perfusion enhances functions of bone marrow stromal cells in three-dimensional culture. Cell Transplant 7(3): 319-326.
    • (1998) Cell Transplant , vol.7 , Issue.3 , pp. 319-326
    • Glowacki, J.1    Mizuno, S.2    Greenberger, J.S.3
  • 10
    • 0035372005 scopus 로고    scopus 로고
    • Effect of convection on osteoblastic cell growth and function in biodegradable polymer foam scaffolds
    • Goldstein AS, Juarez TM, Helmke CD, Gustin MC, Mikos AG. 2001. Effect of convection on osteoblastic cell growth and function in biodegradable polymer foam scaffolds. Biomaterials 22(11): 1279-1288.
    • (2001) Biomaterials , vol.22 , Issue.11 , pp. 1279-1288
    • Goldstein, A.S.1    Juarez, T.M.2    Helmke, C.D.3    Gustin, M.C.4    Mikos, A.G.5
  • 11
    • 34249113091 scopus 로고    scopus 로고
    • Hypoxia enhances proliferation and tissue formation of human mesenchymal stem cells
    • Grayson WL, Zhao F, Bunnell B, Ma T. 2007. Hypoxia enhances proliferation and tissue formation of human mesenchymal stem cells. Biochem Biophys Res Commun 358(3): 948-953.
    • (2007) Biochem Biophys Res Commun , vol.358 , Issue.3 , pp. 948-953
    • Grayson, W.L.1    Zhao, F.2    Bunnell, B.3    Ma, T.4
  • 14
    • 9344258590 scopus 로고    scopus 로고
    • Mechanotransduction and strain amplification in osteocyte cell processes
    • Han YF, Cowin SC, Schaffler MB, Weinbaum S. 2004. Mechanotransduction and strain amplification in osteocyte cell processes. Proc Natl Acad Sci USA 101(47): 16689-16694.
    • (2004) Proc Natl Acad Sci USA , vol.101 , Issue.47 , pp. 16689-16694
    • Han, Y.F.1    Cowin, S.C.2    Schaffler, M.B.3    Weinbaum, S.4
  • 15
    • 0028401483 scopus 로고
    • Bone tissue engineering-The role of interstitial fluid flow
    • Hillsley MV, Frangos JA. 1994. Bone tissue engineering-The role of interstitial fluid flow. Biotechnol Bioeng 43(7): 573-581.
    • (1994) Biotechnol Bioeng , vol.43 , Issue.7 , pp. 573-581
    • Hillsley, M.V.1    Frangos, J.A.2
  • 17
    • 33749257128 scopus 로고    scopus 로고
    • Quantification of the roles of trabecular microarchitecture and trabecular type in determining the elastic modulus of human trabecular bone
    • Liu XWS, Sajda P, Saha PK, Wehrli FW, Guo XE. 2006. Quantification of the roles of trabecular microarchitecture and trabecular type in determining the elastic modulus of human trabecular bone. J Bone Miner Res 21(10): 1608-1617.
    • (2006) J Bone Miner Res , vol.21 , Issue.10 , pp. 1608-1617
    • Liu, X.W.S.1    Sajda, P.2    Saha, P.K.3    Wehrli, F.W.4    Guo, X.E.5
  • 18
    • 0030867071 scopus 로고    scopus 로고
    • Quantitative spatially resolved measurements of mass transfer through laryngeal cartilage
    • Macpherson JV, Ohare D, Unwin PR, Winlove CP. 1997. Quantitative spatially resolved measurements of mass transfer through laryngeal cartilage. Biophys J 73(5): 2771-2781.
    • (1997) Biophys J , vol.73 , Issue.5 , pp. 2771-2781
    • Macpherson, J.V.1    Ohare, D.2    Unwin, P.R.3    Winlove, C.P.4
  • 19
    • 65549164186 scopus 로고    scopus 로고
    • Modeling fluid flow through irregular scaffolds for perfusion bioreactors
    • Maes F, Ransbeeck P, Van Oosterwyck H, Verdonck P. 2009. Modeling fluid flow through irregular scaffolds for perfusion bioreactors. Biotechnol Bioeng 103(3): 621-630.
    • (2009) Biotechnol Bioeng , vol.103 , Issue.3 , pp. 621-630
    • Maes, F.1    Ransbeeck, P.2    Van Oosterwyck, H.3    Verdonck, P.4
  • 21
    • 0035090483 scopus 로고    scopus 로고
    • Quantitative analysis of gene expression in human articular cartilage from normal and osteoarthritic joints
    • Martin I, Jakob M, Schafer D, Dick W, Spagnoli G, Heberer M. 2001. Quantitative analysis of gene expression in human articular cartilage from normal and osteoarthritic joints. Osteoarthr Cartil 9(2): 112-118.
    • (2001) Osteoarthr Cartil , vol.9 , Issue.2 , pp. 112-118
    • Martin, I.1    Jakob, M.2    Schafer, D.3    Dick, W.4    Spagnoli, G.5    Heberer, M.6
  • 22
    • 68749118341 scopus 로고    scopus 로고
    • Bioreactor-based roadmap for the translation of tissue engineering strategies into clinical products
    • Martin I, Smith T, Wendt D. 2009. Bioreactor-based roadmap for the translation of tissue engineering strategies into clinical products. Trends Biotechnol 27(9): 495-502.
    • (2009) Trends Biotechnol , vol.27 , Issue.9 , pp. 495-502
    • Martin, I.1    Smith, T.2    Wendt, D.3
  • 25
    • 0034282186 scopus 로고    scopus 로고
    • Glycosaminoglycan deposition in engineered cartilage: Experiments and mathematical model
    • Obradovic B, Meldon JH, Freed LE, Vunjak-Novakovic G. 2000. Glycosaminoglycan deposition in engineered cartilage: Experiments and mathematical model. AIChE J 46(9): 1860-1871.
    • (2000) AIChE J , vol.46 , Issue.9 , pp. 1860-1871
    • Obradovic, B.1    Meldon, J.H.2    Freed, L.E.3    Vunjak-Novakovic, G.4
  • 26
    • 12344284982 scopus 로고    scopus 로고
    • 3-D computational modeling of media flow through scaffolds in a perfusion bioreactor
    • Porter B, Zauel R, Stockman H, Guldberg R, Fyhrie D. 2005. 3-D computational modeling of media flow through scaffolds in a perfusion bioreactor. J Biomech 38(3): 543-549.
    • (2005) J Biomech , vol.38 , Issue.3 , pp. 543-549
    • Porter, B.1    Zauel, R.2    Stockman, H.3    Guldberg, R.4    Fyhrie, D.5
  • 27
    • 13944255075 scopus 로고    scopus 로고
    • Mathematical model of oxygen distribution in engineered cardiac tissue with parallel channel array perfused with culture medium containing oxygen carriers
    • Radisic M, Deen W, Langer R, Vunjak-Novakovic G. 2005. Mathematical model of oxygen distribution in engineered cardiac tissue with parallel channel array perfused with culture medium containing oxygen carriers. Am J Physiol Heart Circ Physiol 288(3): H1278-H1289.
    • (2005) Am J Physiol Heart Circ Physiol , vol.288 , Issue.3
    • Radisic, M.1    Deen, W.2    Langer, R.3    Vunjak-Novakovic, G.4
  • 28
    • 33645560618 scopus 로고    scopus 로고
    • Oxygen gradients correlate with cell density and cell viability in engineered cardiac tissue
    • Radisic M, Malda J, Epping E, Geng W, Langer R, Vunjak-Novakovic G. 2006. Oxygen gradients correlate with cell density and cell viability in engineered cardiac tissue. Biotechnol Bioeng 93(2): 332-343.
    • (2006) Biotechnol Bioeng , vol.93 , Issue.2 , pp. 332-343
    • Radisic, M.1    Malda, J.2    Epping, E.3    Geng, W.4    Langer, R.5    Vunjak-Novakovic, G.6
  • 29
    • 69449096531 scopus 로고    scopus 로고
    • Connexin 43 as a signaling platform for increasing the volume and spatial distribution of regenerated tissue
    • Rossello RA, Wang Z, Kizana E, Krebsbach PH, Kohn DH. 2009. Connexin 43 as a signaling platform for increasing the volume and spatial distribution of regenerated tissue. Proc Natl Acad Sci USA 106(32): 13219-13224.
    • (2009) Proc Natl Acad Sci USA , vol.106 , Issue.32 , pp. 13219-13224
    • Rossello, R.A.1    Wang, Z.2    Kizana, E.3    Krebsbach, P.H.4    Kohn, D.H.5
  • 30
    • 77954972299 scopus 로고    scopus 로고
    • Finite element analyses of fluid flow conditions in cell culture
    • Salvi JD, Lim JY, Donahue HJ. 2010. Finite element analyses of fluid flow conditions in cell culture. Tissue Eng C Methods 16(4): 661-670.
    • (2010) Tissue Eng C Methods , vol.16 , Issue.4 , pp. 661-670
    • Salvi, J.D.1    Lim, J.Y.2    Donahue, H.J.3
  • 31
    • 0036323143 scopus 로고    scopus 로고
    • Formation of three-dimensional cell/polymer constructs for bone tissue engineering in a spinner flask and a rotating wall vessel bioreactor
    • Sikavitsas VI, Bancroft GN, Mikos AG. 2002. Formation of three-dimensional cell/polymer constructs for bone tissue engineering in a spinner flask and a rotating wall vessel bioreactor. J Biomed Mater Res 62(1): 136-148.
    • (2002) J Biomed Mater Res , vol.62 , Issue.1 , pp. 136-148
    • Sikavitsas, V.I.1    Bancroft, G.N.2    Mikos, A.G.3
  • 32
    • 0345598939 scopus 로고    scopus 로고
    • Mineralized matrix deposition by marrow stromal osteoblasts in 3D perfusion culture increases with increasing fluid shear forces
    • Sikavitsas VI, Bancroft GN, Holtorf HL, Jansen JA, Mikos AG. 2003. Mineralized matrix deposition by marrow stromal osteoblasts in 3D perfusion culture increases with increasing fluid shear forces. Proc Natl Acad Sci USA 100(25): 14683-14688.
    • (2003) Proc Natl Acad Sci USA , vol.100 , Issue.25 , pp. 14683-14688
    • Sikavitsas, V.I.1    Bancroft, G.N.2    Holtorf, H.L.3    Jansen, J.A.4    Mikos, A.G.5
  • 33
    • 17044418448 scopus 로고    scopus 로고
    • Flow perfusion enhances the calcified matrix deposition of marrow stromal cells in biodegradable nonwoven fiber mesh scaffolds
    • Sikavitsas VI, Bancroft GN, Lemoine JJ, Liebschner MAK, Dauner M, Mikos AG. 2005. Flow perfusion enhances the calcified matrix deposition of marrow stromal cells in biodegradable nonwoven fiber mesh scaffolds. Ann Biomed Eng 33(1): 63-70.
    • (2005) Ann Biomed Eng , vol.33 , Issue.1 , pp. 63-70
    • Sikavitsas, V.I.1    Bancroft, G.N.2    Lemoine, J.J.3    Liebschner, M.A.K.4    Dauner, M.5    Mikos, A.G.6
  • 35
    • 62249103678 scopus 로고    scopus 로고
    • Effect of dynamic 3-D culture on proliferation, distribution, and osteogenic differentiation of human mesenchymal stem cells
    • Stiehler M, Bunger C, Baatrup A, Lind M, Kassem M, Mygind T. 2009. Effect of dynamic 3-D culture on proliferation, distribution, and osteogenic differentiation of human mesenchymal stem cells. J Biomed Mater Res A 89A(1): 96-107.
    • (2009) J Biomed Mater Res A , vol.89 A , Issue.1 , pp. 96-107
    • Stiehler, M.1    Bunger, C.2    Baatrup, A.3    Lind, M.4    Kassem, M.5    Mygind, T.6
  • 36
    • 77951978888 scopus 로고    scopus 로고
    • Computational modeling of flow-induced shear stresses within 3D salt-leached porous scaffolds imaged via micro-CT
    • Voronov R, VanGordon S, Sikavitsas VI, Papavassiliou DV. 2010a. Computational modeling of flow-induced shear stresses within 3D salt-leached porous scaffolds imaged via micro-CT. J Biomech 43(7): 1279-1286.
    • (2010) J Biomech , vol.43 , Issue.7 , pp. 1279-1286
    • Voronov, R.1    VanGordon, S.2    Sikavitsas, V.I.3    Papavassiliou, D.V.4
  • 38
    • 0035918140 scopus 로고    scopus 로고
    • Osteopontin gene regulation by oscillatory fluid flow via intracellular calcium mobilization and activation of mitogen-activated protein kinase in MC3T3-E1 osteoblasts
    • You J, Reilly GC, Zhen XC, Yellowley CE, Chen Q, Donahue HJ, Jacobs CR. 2001. Osteopontin gene regulation by oscillatory fluid flow via intracellular calcium mobilization and activation of mitogen-activated protein kinase in MC3T3-E1 osteoblasts. J Biol Chem 276(16): 13365-13371.
    • (2001) J Biol Chem , vol.276 , Issue.16 , pp. 13365-13371
    • You, J.1    Reilly, G.C.2    Zhen, X.C.3    Yellowley, C.E.4    Chen, Q.5    Donahue, H.J.6    Jacobs, C.R.7
  • 39
    • 3843112154 scopus 로고    scopus 로고
    • Bioreactor-based bone tissue engineering: The influence of dynamic flow on osteoblast phenotypic expression and matrix mineralization
    • Yu XJ, Botchwey EA, Levine EM, Pollack SR, Laurencin CT. 2004. Bioreactor-based bone tissue engineering: The influence of dynamic flow on osteoblast phenotypic expression and matrix mineralization. Proc Natl Acad Sci USA 101(31): 11203-11208.
    • (2004) Proc Natl Acad Sci USA , vol.101 , Issue.31 , pp. 11203-11208
    • Yu, X.J.1    Botchwey, E.A.2    Levine, E.M.3    Pollack, S.R.4    Laurencin, C.T.5
  • 40
    • 0028048167 scopus 로고
    • A fiber-matrix model for fluid-flow and streaming potentials in the canaliculi of an osteon
    • Zeng Y, Cowin SC, Weinbaum S. 1994. A fiber-matrix model for fluid-flow and streaming potentials in the canaliculi of an osteon. Ann Biomed Eng 22(3): 280-292.
    • (1994) Ann Biomed Eng , vol.22 , Issue.3 , pp. 280-292
    • Zeng, Y.1    Cowin, S.C.2    Weinbaum, S.3
  • 41
    • 0032110570 scopus 로고    scopus 로고
    • Electrical signal transmission in a bone cell network: The influence of a discrete gap junction
    • Zhang D, Weinbaum S, Cowin SC. 1998. Electrical signal transmission in a bone cell network: The influence of a discrete gap junction. Ann Biomed Eng 26(4): 644-659.
    • (1998) Ann Biomed Eng , vol.26 , Issue.4 , pp. 644-659
    • Zhang, D.1    Weinbaum, S.2    Cowin, S.C.3
  • 42
    • 0036836664 scopus 로고    scopus 로고
    • Bone morphogenetic protein-2 modulation of. chondrogenic differentiation in vitro involves gap junction-mediated intercellular communication
    • Zhang W, Green C, Stott NS. 2002. Bone morphogenetic protein-2 modulation of. chondrogenic differentiation in vitro involves gap junction-mediated intercellular communication. J Cell Physiol 193(2): 233-243.
    • (2002) J Cell Physiol , vol.193 , Issue.2 , pp. 233-243
    • Zhang, W.1    Green, C.2    Stott, N.S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.