-
1
-
-
78249231784
-
Inferring parameters of gene regulatory networks via particle filtering
-
Shen X, Vikalo H Inferring parameters of gene regulatory networks via particle filtering. EURASIP Journal on Advances in Signal Processing 2010, 2010:204612.
-
(2010)
EURASIP Journal on Advances in Signal Processing
, vol.2010
, pp. 204612
-
-
Shen, X.1
Vikalo, H.2
-
3
-
-
39749142711
-
Boolean modeling of genetic regulatory networks
-
Springer, New York, USA, E. Ben-naim, H. Frauenfelder, Z. Toroczkai (Eds.)
-
Albert R Boolean modeling of genetic regulatory networks. Complex Networks 2004, Springer, New York, USA. E. Ben-naim, H. Frauenfelder, Z. Toroczkai (Eds.).
-
(2004)
Complex Networks
-
-
Albert, R.1
-
4
-
-
33947305781
-
ARACNE: An algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context
-
Margolin AA, Nemenman I, Basso K, Wiggins C, Stolovitzky G, Favera RD, Califano A ARACNE: An algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. BMC Bioinformatics 2006, 7(Suppl 1):S7.
-
(2006)
BMC Bioinformatics
, vol.7
, Issue.SUPPL. 1
-
-
Margolin, A.A.1
Nemenman, I.2
Basso, K.3
Wiggins, C.4
Stolovitzky, G.5
Favera, R.D.6
Califano, A.7
-
5
-
-
64049105056
-
Reconstruction of gene regulatory networks based on two-stage Bayesian network structure learning algorithm
-
Liu GX, Feng W, Wang H, Liu L, Zhou CG Reconstruction of gene regulatory networks based on two-stage Bayesian network structure learning algorithm. Journal of Bionic Engineering 2009, 6:86-92.
-
(2009)
Journal of Bionic Engineering
, vol.6
, pp. 86-92
-
-
Liu, G.X.1
Feng, W.2
Wang, H.3
Liu, L.4
Zhou, C.G.5
-
6
-
-
0032616683
-
Identification of genetic networks from a small number of gene expression patterns under the Boolean network model
-
Akutsu T, Miyano S, Kuhara S Identification of genetic networks from a small number of gene expression patterns under the Boolean network model. Pacific Symposium on Biocomputing 1999, 4:17-28.
-
(1999)
Pacific Symposium on Biocomputing
, vol.4
, pp. 17-28
-
-
Akutsu, T.1
Miyano, S.2
Kuhara, S.3
-
7
-
-
20844452570
-
A stochastic differential equation model for quantifying transcriptional regulatory network in Saccharomyces cerevisiae
-
Chen KC, Wang TY, Tseng HH, Huang CYF, Kao CY A stochastic differential equation model for quantifying transcriptional regulatory network in Saccharomyces cerevisiae. Bioinformatics 2005, 21:2883-2990.
-
(2005)
Bioinformatics
, vol.21
, pp. 2883-2990
-
-
Chen, K.C.1
Wang, T.Y.2
Tseng, H.H.3
Huang, C.Y.F.4
Kao, C.Y.5
-
9
-
-
0033707946
-
Using Bayesian networks to analyze expression data
-
Friedman N, Linial M, Nachman I, Pe'er D Using Bayesian networks to analyze expression data. Journal of Computational Biology 2000, 7:601-620.
-
(2000)
Journal of Computational Biology
, vol.7
, pp. 601-620
-
-
Friedman, N.1
Linial, M.2
Nachman, I.3
Pe'er, D.4
-
10
-
-
33646201924
-
Recurrent neuro-fuzzy network models for reverse engineering gene regulatory interactions
-
Maraziotis I, Dragomir A, Bezerianos A Recurrent neuro-fuzzy network models for reverse engineering gene regulatory interactions. Lecture Notes in Computer Science 2005, 3695:24-34.
-
(2005)
Lecture Notes in Computer Science
, vol.3695
, pp. 24-34
-
-
Maraziotis, I.1
Dragomir, A.2
Bezerianos, A.3
-
11
-
-
70449824006
-
-
A recurrent fuzzy neural model of a gene regulatory network for knowledge extraction using differential evolution. Proceedings of the Eleventh conference on Congress on Evolutionary Computation, Trondheim, Norway
-
Datta D, Choudhuri S S, Konar A, Nagar A, Das S. A recurrent fuzzy neural model of a gene regulatory network for knowledge extraction using differential evolution. Proceedings of the Eleventh conference on Congress on Evolutionary Computation, Trondheim, Norway, 2009, 2900-2906.
-
(2009)
, pp. 2900-2906
-
-
Datta, D.1
Choudhuri, S.S.2
Konar, A.3
Nagar, A.4
Das, S.5
-
12
-
-
70449553780
-
-
A neural networks algorithm for inferring drug gene regulatory networks from microarray time-series with missing transcription factors information. Proceedings of the International Joint Conference on Neural Networks, Atlanta, GA, USA
-
Floares A G. A neural networks algorithm for inferring drug gene regulatory networks from microarray time-series with missing transcription factors information. Proceedings of the International Joint Conference on Neural Networks, Atlanta, GA, USA, 2009, 848-854.
-
(2009)
, pp. 848-854
-
-
Floares, A.G.1
-
13
-
-
77955315182
-
A neural network based modeling and validation approach for identifying gene regulatory networks
-
Knott S, Mostafavi S, Mousavi P A neural network based modeling and validation approach for identifying gene regulatory networks. Neurocomputing 2010, 73:2419-2429.
-
(2010)
Neurocomputing
, vol.73
, pp. 2419-2429
-
-
Knott, S.1
Mostafavi, S.2
Mousavi, P.3
-
14
-
-
78751633682
-
Ensemble of Elman neural networks and support vector machines for reverse engineering of gene regulatory networks
-
Ao SI, Palade V Ensemble of Elman neural networks and support vector machines for reverse engineering of gene regulatory networks. Applied Soft Computing 2011, 11:1718-1726.
-
(2011)
Applied Soft Computing
, vol.11
, pp. 1718-1726
-
-
Ao, S.I.1
Palade, V.2
-
15
-
-
39749143324
-
An adaptive neuro-fuzzy system for efficient implementations
-
Echanobe J, del Campo I, Bosque G An adaptive neuro-fuzzy system for efficient implementations. Information Sciences 2008, 178:2150-2162.
-
(2008)
Information Sciences
, vol.178
, pp. 2150-2162
-
-
Echanobe, J.1
del Campo, I.2
Bosque, G.3
-
16
-
-
40049085383
-
A self-organizing recurrent fuzzy CMAC model for dynamic system identification
-
Lin CJ, Lee CY A self-organizing recurrent fuzzy CMAC model for dynamic system identification. International Journal of Intelligent Systems 2008, 23:384-396.
-
(2008)
International Journal of Intelligent Systems
, vol.23
, pp. 384-396
-
-
Lin, C.J.1
Lee, C.Y.2
-
17
-
-
40649121069
-
Rule generation for hierarchical collaborative fuzzy system
-
Salgado P Rule generation for hierarchical collaborative fuzzy system. Applied Mathematical Modelling 2008, 32:1159-1178.
-
(2008)
Applied Mathematical Modelling
, vol.32
, pp. 1159-1178
-
-
Salgado, P.1
-
20
-
-
0031742022
-
Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization
-
Spellman PT, Sherlock G, Zhang MQ, Iyer VR, Anders K, Eisen MB, Brown PO, Botstein D, Futcher B Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Molecular Biology of the Cell 1998, 9:3273-3297.
-
(1998)
Molecular Biology of the Cell
, vol.9
, pp. 3273-3297
-
-
Spellman, P.T.1
Sherlock, G.2
Zhang, M.Q.3
Iyer, V.R.4
Anders, K.5
Eisen, M.B.6
Brown, P.O.7
Botstein, D.8
Futcher, B.9
-
22
-
-
79953012791
-
-
Predicted Regulatory Module
-
Predicted Regulatory Module Saccharomyces Genome Database, [2011-2-24] http://db.yeastgenome.org/exp_modules/cellcycle/cluster_293.html.
-
Saccharomyces Genome Database, [2011-2-24]
-
-
|