메뉴 건너뛰기




Volumn 8, Issue 1, 2011, Pages 98-106

Combination of Neuro-Fuzzy Network Models with Biological Knowledge for Reconstructing Gene Regulatory Networks

Author keywords

Biological knowledge; Gene regulatory networks; Neuro fuzzy network; Regulators

Indexed keywords

BIOLOGICAL KNOWLEDGE; CELLULAR SYSTEM; COMPUTATIONAL BIOLOGY; CORE FACTORS; GENE REGULATORY NETWORKS; LARGE-SCALE EXPRESSION; NEURO-FUZZY ARCHITECTURES; NEURO-FUZZY NETWORK; REGULATORS; REGULATORY CONDITIONS; REGULATORY NETWORK; WEIGHT VALUES;

EID: 79952996247     PISSN: 16726529     EISSN: None     Source Type: Journal    
DOI: 10.1016/S1672-6529(11)60008-5     Document Type: Article
Times cited : (14)

References (22)
  • 1
    • 78249231784 scopus 로고    scopus 로고
    • Inferring parameters of gene regulatory networks via particle filtering
    • Shen X, Vikalo H Inferring parameters of gene regulatory networks via particle filtering. EURASIP Journal on Advances in Signal Processing 2010, 2010:204612.
    • (2010) EURASIP Journal on Advances in Signal Processing , vol.2010 , pp. 204612
    • Shen, X.1    Vikalo, H.2
  • 3
    • 39749142711 scopus 로고    scopus 로고
    • Boolean modeling of genetic regulatory networks
    • Springer, New York, USA, E. Ben-naim, H. Frauenfelder, Z. Toroczkai (Eds.)
    • Albert R Boolean modeling of genetic regulatory networks. Complex Networks 2004, Springer, New York, USA. E. Ben-naim, H. Frauenfelder, Z. Toroczkai (Eds.).
    • (2004) Complex Networks
    • Albert, R.1
  • 5
    • 64049105056 scopus 로고    scopus 로고
    • Reconstruction of gene regulatory networks based on two-stage Bayesian network structure learning algorithm
    • Liu GX, Feng W, Wang H, Liu L, Zhou CG Reconstruction of gene regulatory networks based on two-stage Bayesian network structure learning algorithm. Journal of Bionic Engineering 2009, 6:86-92.
    • (2009) Journal of Bionic Engineering , vol.6 , pp. 86-92
    • Liu, G.X.1    Feng, W.2    Wang, H.3    Liu, L.4    Zhou, C.G.5
  • 6
    • 0032616683 scopus 로고    scopus 로고
    • Identification of genetic networks from a small number of gene expression patterns under the Boolean network model
    • Akutsu T, Miyano S, Kuhara S Identification of genetic networks from a small number of gene expression patterns under the Boolean network model. Pacific Symposium on Biocomputing 1999, 4:17-28.
    • (1999) Pacific Symposium on Biocomputing , vol.4 , pp. 17-28
    • Akutsu, T.1    Miyano, S.2    Kuhara, S.3
  • 7
    • 20844452570 scopus 로고    scopus 로고
    • A stochastic differential equation model for quantifying transcriptional regulatory network in Saccharomyces cerevisiae
    • Chen KC, Wang TY, Tseng HH, Huang CYF, Kao CY A stochastic differential equation model for quantifying transcriptional regulatory network in Saccharomyces cerevisiae. Bioinformatics 2005, 21:2883-2990.
    • (2005) Bioinformatics , vol.21 , pp. 2883-2990
    • Chen, K.C.1    Wang, T.Y.2    Tseng, H.H.3    Huang, C.Y.F.4    Kao, C.Y.5
  • 10
    • 33646201924 scopus 로고    scopus 로고
    • Recurrent neuro-fuzzy network models for reverse engineering gene regulatory interactions
    • Maraziotis I, Dragomir A, Bezerianos A Recurrent neuro-fuzzy network models for reverse engineering gene regulatory interactions. Lecture Notes in Computer Science 2005, 3695:24-34.
    • (2005) Lecture Notes in Computer Science , vol.3695 , pp. 24-34
    • Maraziotis, I.1    Dragomir, A.2    Bezerianos, A.3
  • 11
    • 70449824006 scopus 로고    scopus 로고
    • A recurrent fuzzy neural model of a gene regulatory network for knowledge extraction using differential evolution. Proceedings of the Eleventh conference on Congress on Evolutionary Computation, Trondheim, Norway
    • Datta D, Choudhuri S S, Konar A, Nagar A, Das S. A recurrent fuzzy neural model of a gene regulatory network for knowledge extraction using differential evolution. Proceedings of the Eleventh conference on Congress on Evolutionary Computation, Trondheim, Norway, 2009, 2900-2906.
    • (2009) , pp. 2900-2906
    • Datta, D.1    Choudhuri, S.S.2    Konar, A.3    Nagar, A.4    Das, S.5
  • 12
    • 70449553780 scopus 로고    scopus 로고
    • A neural networks algorithm for inferring drug gene regulatory networks from microarray time-series with missing transcription factors information. Proceedings of the International Joint Conference on Neural Networks, Atlanta, GA, USA
    • Floares A G. A neural networks algorithm for inferring drug gene regulatory networks from microarray time-series with missing transcription factors information. Proceedings of the International Joint Conference on Neural Networks, Atlanta, GA, USA, 2009, 848-854.
    • (2009) , pp. 848-854
    • Floares, A.G.1
  • 13
    • 77955315182 scopus 로고    scopus 로고
    • A neural network based modeling and validation approach for identifying gene regulatory networks
    • Knott S, Mostafavi S, Mousavi P A neural network based modeling and validation approach for identifying gene regulatory networks. Neurocomputing 2010, 73:2419-2429.
    • (2010) Neurocomputing , vol.73 , pp. 2419-2429
    • Knott, S.1    Mostafavi, S.2    Mousavi, P.3
  • 14
    • 78751633682 scopus 로고    scopus 로고
    • Ensemble of Elman neural networks and support vector machines for reverse engineering of gene regulatory networks
    • Ao SI, Palade V Ensemble of Elman neural networks and support vector machines for reverse engineering of gene regulatory networks. Applied Soft Computing 2011, 11:1718-1726.
    • (2011) Applied Soft Computing , vol.11 , pp. 1718-1726
    • Ao, S.I.1    Palade, V.2
  • 15
    • 39749143324 scopus 로고    scopus 로고
    • An adaptive neuro-fuzzy system for efficient implementations
    • Echanobe J, del Campo I, Bosque G An adaptive neuro-fuzzy system for efficient implementations. Information Sciences 2008, 178:2150-2162.
    • (2008) Information Sciences , vol.178 , pp. 2150-2162
    • Echanobe, J.1    del Campo, I.2    Bosque, G.3
  • 16
    • 40049085383 scopus 로고    scopus 로고
    • A self-organizing recurrent fuzzy CMAC model for dynamic system identification
    • Lin CJ, Lee CY A self-organizing recurrent fuzzy CMAC model for dynamic system identification. International Journal of Intelligent Systems 2008, 23:384-396.
    • (2008) International Journal of Intelligent Systems , vol.23 , pp. 384-396
    • Lin, C.J.1    Lee, C.Y.2
  • 17
    • 40649121069 scopus 로고    scopus 로고
    • Rule generation for hierarchical collaborative fuzzy system
    • Salgado P Rule generation for hierarchical collaborative fuzzy system. Applied Mathematical Modelling 2008, 32:1159-1178.
    • (2008) Applied Mathematical Modelling , vol.32 , pp. 1159-1178
    • Salgado, P.1
  • 22
    • 79953012791 scopus 로고    scopus 로고
    • Predicted Regulatory Module
    • Predicted Regulatory Module Saccharomyces Genome Database, [2011-2-24] http://db.yeastgenome.org/exp_modules/cellcycle/cluster_293.html.
    • Saccharomyces Genome Database, [2011-2-24]


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.