메뉴 건너뛰기




Volumn , Issue , 2009, Pages 2900-2906

A recurrent fuzzy neural model of a gene regulatory network for knowledge extraction using differential evolution

Author keywords

Differential evolution algorithm; Fuzzy recurrent neural network; Gene regulatory network; Time series gene expression data

Indexed keywords

DIFFERENTIAL EVOLUTION; DIFFERENTIAL EVOLUTION ALGORITHM; DIFFERENTIAL EVOLUTION ALGORITHMS; FUZZIFICATIONS; FUZZY MEMBERSHIP; FUZZY NEURAL MODELS; GENE EXPRESSION DATA; GENE REGULATORY NETWORKS; KNOWLEDGE EXTRACTION; NEURAL NET; TIME-SERIES GENE EXPRESSION DATA;

EID: 70449824006     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CEC.2009.4983307     Document Type: Conference Paper
Times cited : (14)

References (40)
  • 1
    • 36248944068 scopus 로고    scopus 로고
    • Inference of genetic regulatory networks with recurrent neural network models using particle swarm optimization
    • Rui Xu, Donald C. Wunsch II and Ronald L. Frank, " Inference of genetic regulatory networks with recurrent neural network models using particle swarm optimization" IEEE/ACM transaction on computational biology and bioinformatics, vol.4, No.4, pp 681-692, 2007.
    • (2007) IEEE/ACM transaction on computational biology and bioinformatics , vol.4 , Issue.4 , pp. 681-692
    • Xu, R.1    Wunsch II, D.C.2    Frank, R.L.3
  • 2
    • 0034156715 scopus 로고    scopus 로고
    • Chaotic spreading sequences with multiple access performance better than random sequences
    • Fundamental Theory and Application
    • C. Lng, S.Q. Li. Chaotic spreading sequences with multiple access performance better than random sequences. IEEE transaction on Circuit and System - I, Fundamental Theory and Application, 47(3): 394-397, 2000.
    • (2000) IEEE transaction on Circuit and System - I , vol.47 , Issue.3 , pp. 394-397
    • Lng, C.1    Li, S.Q.2
  • 3
    • 0017185443 scopus 로고
    • Simple mathematical models with very complicated dynamics
    • R.May. Simple mathematical models with very complicated dynamics. Nature, 261: 459-467, 1976.
    • (1976) Nature , vol.261 , pp. 459-467
    • May, R.1
  • 4
    • 0142000477 scopus 로고    scopus 로고
    • Differential evolution -A simple and efficient heuristic for global optimization over continuous spaces
    • Storn, Rainer, and Kenneth Price. Differential Evolution -A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces. Journal of Global Optimization11, 1997, pp. 341-359.
    • (1997) Journal of Global Optimization , vol.11 , pp. 341-359
    • Rainer, S.1    Price, K.2
  • 7
    • 0032616683 scopus 로고    scopus 로고
    • Identification of genetic networks from a small number of gene expression patterns under the Boolean network model
    • T. Akutsu, S. Miyano, S. Kuhara, "Identification of genetic networks from a small number of gene expression patterns under the Boolean network model, " Pac Symp Biocomput, 17-28, 1999.
    • (1999) Pac Symp Biocomput , pp. 17-28
    • Akutsu, T.1    Miyano, S.2    Kuhara, S.3
  • 8
    • 0031616241 scopus 로고    scopus 로고
    • Reveal, a general reverse engineering algorithm for inference of genetic network architectures
    • S. Liang, S. Fuhrman, R. Somogyi, "Reveal, a general reverse engineering algorithm for inference of genetic network architectures, " Pac Symp Biocomput, 18-29, 1998.
    • (1998) Pac Symp Biocomput , pp. 18-29
    • Liang, S.1    Fuhrman, S.2    Somogyi, R.3
  • 9
    • 0043130707 scopus 로고    scopus 로고
    • Inferring gene regulatory networks from time-ordered gene expression data of Bacillus subtills using differential equations
    • J. L. Michael De Hoon, S. Imota, K. Kobayashi, N. Ogasawara, S.Miyano, "Inferring gene regulatory networks from time-ordered gene expression data of Bacillus subtills using differential equations, " Pac Symp Biocomput, 17-28, 2003.
    • (2003) Pac Symp Biocomput , pp. 17-28
    • De Hoon, J.L.M.1    Imota, S.2    Kobayashi, K.3    Ogasawara, N.4    Miyano, S.5
  • 10
    • 0032611513 scopus 로고    scopus 로고
    • Modeling gene expression with differential equations
    • T. Chen, H. L. He, G. M. Church, "Modeling gene expression with differential equations, " Pac SympBiocomput, 4: 29-40, 1999.
    • (1999) Pac SympBiocomput , vol.4 , pp. 29-40
    • Chen, T.1    He, H.L.2    Church, G.M.3
  • 12
    • 0036372453 scopus 로고    scopus 로고
    • Estimation of genetic networks and functional structures between genes by using Bayesian networks and nonparametric regression
    • S. Imoto, T. Gota, S. Miyano, "Estimation of genetic networks and functional structures between genes by using Bayesian networks and nonparametric regression, " Pac Symp Biocomput, 175-186, 2002.
    • (2002) Pac Symp Biocomput , pp. 175-186
    • Imoto, S.1    Gota, T.2    Miyano, S.3
  • 13
    • 11144302109 scopus 로고    scopus 로고
    • Inference of genetic regulatory networks with recurrent neural network models
    • Conference Proceedings - 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2004
    • R. Xu, X. Hu, D. Wunsch, "Inference of genetic regulatory networks with recurrent neural network models, " Engineering in Medicine and Biology Society, 2004. EMBC 2004. Conference Proceedings. 26th Annual International Conference of the Volume2, 1-5 Sept. 2004 Page(s): 2905 -2908 Vol.4. (Pubitemid 40035646)
    • (2004) Annual International Conference of the IEEE Engineering in Medicine and Biology - Proceedings , vol.4 , pp. 2905-2908
    • Xu, R.1    Hu, X.2    Wunsch, D.C.3
  • 14
    • 34548094231 scopus 로고    scopus 로고
    • Evolving genetic regulatory networks using an artificial genome
    • J. Hallinan and J. Wiles, "Evolving Genetic Regulatory Networks Using an Artificial Genome, " Proc. Second Asia-Pacific Bioinformatics Conf., vol.29, pp. 291-296, 2004.
    • (2004) Proc. Second Asia-Pacific Bioinformatics Conf , vol.29 , pp. 291-296
    • Hallinan, J.1    Wiles, J.2
  • 16
    • 0344464762 scopus 로고    scopus 로고
    • Sensitivity and specificity of inferring genetic regulatory interactions from micro array experiments with dynamic bayesian networks
    • D. Husmeier, "Sensitivity and Specificity of Inferring Genetic Regulatory Interactions from Micro array Experiments with Dynamic Bayesian Networks, " Bioinformatics, vol.19, no.17, pp. 2271-2282, 2003.
    • (2003) Bioinformatics , vol.19 , Issue.17 , pp. 2271-2282
    • Husmeier, D.1
  • 18
    • 3242891560 scopus 로고    scopus 로고
    • Estimating gene networks from gene expression data by combining bayesian network model with promoter element detection
    • Y. Tamada, S. Kim, H. Bannai, S. Imoto, K. Tashiro, S. Kuhara, and S. Miyano, "Estimating Gene Networks from Gene Expression Data by Combining Bayesian Network Model with Promoter Element Detection, " Bioinformatics, vol.19, pp. ii227-ii236, supplement 2, 2003.
    • (2003) Bioinformatics , vol.19 , Issue.SUPPL. 2
    • Tamada, Y.1    Kim, S.2    Bannai, H.3    Imoto, S.4    Tashiro, K.5    Kuhara, S.6    Miyano, S.7
  • 24
    • 16644389406 scopus 로고    scopus 로고
    • A gene regulatory network model for cell-fate determination during arabidopsis thaliana flower development that is robust and recovers experimental gene expression profiles
    • 2004 American Society of Plant Biologists
    • Carlos Epinosa-soto, Pablo Padilla-Longoria and Elena R.Alvarez-Buylla, "A Gene Regulatory Network Model for Cell-Fate Determination during Arabidopsis thaliana Flower Development That Is Robust and Recovers Experimental Gene Expression Profiles." The Plant Cell, Vol.16, PP: 2923-2939, November 2004, www.plantcell.org 2004 American Society of Plant Biologists.
    • (2004) Plant Cell , vol.16 , pp. 2923-2939
    • Epinosa-soto, C.1    Padilla-Longoria, P.2    Alvarez-Buylla, E.R.3
  • 25
    • 45149101194 scopus 로고    scopus 로고
    • Current approaches to gene regulatory network modeling
    • doi: 10.1186/1471-2105-8-S6-S9, This article is available from:
    • Thomas Schlitt and Alvis Brazma, "Current approaches to gene regulatory network modeling", BMC Bioinformatics 2007, 8(Suppl 6): S9 doi: 10.1186/1471-2105-8-S6-S9, This article is available from: http://www. biomedcentral.com/1471- 2105/8/S6/S9.
    • (2007) BMC Bioinformatics , vol.8 , Issue.SUPPL. 6
    • Thomas, S.1    Brazma, A.2
  • 26
    • 34848893948 scopus 로고    scopus 로고
    • Modeling of gene regulatory networks with hybrid differential evolution and particle swarm optimization
    • online available at
    • Rui Xu, Ganesh K.Venayagamoorthy, Donald C. Wunsch II, "Modeling of gene regulatory networks with hybrid differential evolution and particle swarm optimization", Science Direct, Neural networks 20 (2007) 917-927, online available at www.sciencedirect.com.
    • (2007) Science Direct, Neural networks , vol.20 , pp. 917-927
    • Xu, R.1    Venayagamoorthy, G.K.2    Wunsch II, D.C.3
  • 27
    • 0035082045 scopus 로고    scopus 로고
    • Neural network model of gene expression
    • Vohradsky J, "Neural Network Model of Gene Expression", the FASEB journal, 15(2001) 846-1354.
    • (2001) FASEB journal , vol.15 , pp. 846-1354
    • Vohradsky, J.1
  • 28
    • 0036113977 scopus 로고    scopus 로고
    • Extended kalman filter training of neural network on SIMD parallel machine
    • ISSN: 0743-7315
    • Shuhui Li, Donald C. Wunsch, Edgar O'Hair, Michael G. Giesselman, "Extended Kalman filter training of neural network on SIMD parallel machine", journal of Parallel and Distributed Computing , Volume 62, issue 4 (April 2002), pages: 544 - 562, ISSN: 0743-7315.
    • (2002) Journal of Parallel and Distributed Computing , vol.62 , Issue.4 , pp. 544-562
    • Li, S.1    Wunsch, D.C.2    O'Hair, E.3    Giesselman, M.G.4
  • 29
    • 0032785934 scopus 로고    scopus 로고
    • Dynamic tunneling technique for efficient training of multilayer perceptrons
    • Pinaki Roychowdhuri, Y.P. Singh, and R.A Chanskar, "Dynamic Tunneling Technique for efficient Training of Multilayer Perceptrons", IEEE transaction on Neural Networks, Vol.10, NO.1, January 1999.
    • (1999) IEEE transaction on Neural Networks , vol.10 , Issue.1
    • Roychowdhuri, P.1    Singh, Y.P.2    Chanskar, R.A.3
  • 31
    • 8844277626 scopus 로고    scopus 로고
    • Analyzing time series gene expression data
    • Bar-Joseph, Z. (2004). "Analyzing time series gene expression data", Bioinformatics, 20 (16), 2493-2503.
    • (2004) Bioinformatics , vol.20 , Issue.16 , pp. 2493-2503
    • Bar-Joseph, Z.1
  • 32
    • 0036207347 scopus 로고    scopus 로고
    • Modeling and simulation of genetic regulatory systems: A literature review
    • De Jong, H. (2002). Modeling and simulation of genetic regulatory systems: a literature review. Journal of Computational Biology, 9, 67-103.
    • (2002) Journal of Computational Biology , vol.9 , pp. 67-103
    • De Jong, H.1
  • 33
    • 0034104824 scopus 로고    scopus 로고
    • Coarse-grained reverse engineering of genetic regulatory networks
    • Wahde, M., & Hartz, J. (2000). Coarse-grained reverse engineering of genetic regulatory networks. Biosystems, 55, 129-136.
    • (2000) Biosystems , vol.55 , pp. 129-136
    • Wahde, M.1    Hartz, J.2
  • 34
    • 0034791625 scopus 로고    scopus 로고
    • Modeling genetic regulatory dynamics in neural development
    • Wahde, M., & Hartz, J. (2001). Modeling genetic regulatory dynamics in neural development. Journal of computational Biology, 8, 429-442.
    • (2001) Journal of computational Biology , vol.8 , pp. 429-442
    • Wahde, M.1    Hartz, J.2
  • 36
    • 0002054202 scopus 로고    scopus 로고
    • Modeling the complexity of genetic networks: understanding multigenic and pleiotropic regulation
    • Somogyi, R., and Sniegoski, C.A. (1996) "Modeling the complexity of genetic networks: understanding multigenic and pleiotropic regulation", complexity 1, 45-63.
    • (1996) Complexity , vol.1 , pp. 45-63
    • Somogyi, R.1    Sniegoski, C.A.2
  • 38
    • 0025503558 scopus 로고
    • Backpropagation through time: what it does and how to do it
    • Werbos, P. (1990). "Backpropagation through time: what it does and how to do it", Proceedings of IEEE, 78(10), 1550-1560.
    • (1990) Proceedings of IEEE , vol.78 , Issue.10 , pp. 1550-1560
    • Werbos P1
  • 40
    • 0022471098 scopus 로고
    • Learning representation by backpropagation errors
    • D.E Rumelhart, G.E Hinton, and R.J. Williams, "Learning representation by backpropagation errors", Nature, Vol.323, pp. 533 - 536, 1986.
    • (1986) Nature , vol.323 , pp. 533-536
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.