메뉴 건너뛰기




Volumn 73, Issue 13-15, 2010, Pages 2419-2429

A neural network based modeling and validation approach for identifying gene regulatory networks

Author keywords

Gene regulatory networks; Neural networks; Reverse engineering

Indexed keywords

ANIMAL MODEL; BIOLOGICAL DATA; COMPUTATIONAL APPROACH; DATA SETS; GENE EXPRESSION DATA; GENE REGULATORY NETWORKS; MODELING FRAMEWORKS; REGULATORY ELEMENTS; REGULATORY INTERACTIONS; STOCHASTIC SAMPLING; TARGET GENE EXPRESSION;

EID: 77955315182     PISSN: 09252312     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.neucom.2010.04.018     Document Type: Article
Times cited : (11)

References (42)
  • 1
    • 77955325539 scopus 로고    scopus 로고
    • Inference of gene regulatory models by genetic algorithms, in: Proceedings of Genetic and Evolutionary Computation Conference, San Francisco, CA
    • S. Ando, H. Iba, Inference of gene regulatory models by genetic algorithms, in: Proceedings of Genetic and Evolutionary Computation Conference, San Francisco, CA, 2001.
    • (2001)
    • Ando, S.1    Iba, H.2
  • 2
    • 0030986188 scopus 로고    scopus 로고
    • The hardwiring of development: organization and function of genomic regulatory systems
    • Arnon M., Davidson E. The hardwiring of development: organization and function of genomic regulatory systems. Development 1997, 124:1851-1864.
    • (1997) Development , vol.124 , pp. 1851-1864
    • Arnon, M.1    Davidson, E.2
  • 4
    • 33646920070 scopus 로고    scopus 로고
    • Iterative reconstruction of transcriptional regulatory networks: an algorithmic approach
    • Barrett C., Palsson B. Iterative reconstruction of transcriptional regulatory networks: an algorithmic approach. PLOS Computation Biology 2006, 2(5):429-438.
    • (2006) PLOS Computation Biology , vol.2 , Issue.5 , pp. 429-438
    • Barrett, C.1    Palsson, B.2
  • 5
    • 46249112705 scopus 로고    scopus 로고
    • Boolean network models of cellular regulation: prospects and limitation
    • Bornholdt S. Boolean network models of cellular regulation: prospects and limitation. Journal of the Royal Society, Interface 2008, 5:S85-S94.
    • (2008) Journal of the Royal Society, Interface , vol.5
    • Bornholdt, S.1
  • 6
    • 0033655775 scopus 로고    scopus 로고
    • Mutual information relevance networks: functional genomic clustering using pairwise entropy measurements, in: Proceedings of the Pacific Symposium on Biocomputing, Hawaii
    • A. Butte, I. Kohane, Mutual information relevance networks: functional genomic clustering using pairwise entropy measurements, in: Proceedings of the Pacific Symposium on Biocomputing, Hawaii, 2000.
    • (2000)
    • Butte, A.1    Kohane, I.2
  • 7
    • 0032611513 scopus 로고    scopus 로고
    • Modeling gene expression with differential equations, in: Proceedings of the Pacific Symposium on Biocomputing, Hawaii
    • T. Chen, H. He, G. Church, Modeling gene expression with differential equations, in: Proceedings of the Pacific Symposium on Biocomputing, Hawaii, 1999.
    • (1999)
    • Chen, T.1    He, H.2    Church, G.3
  • 8
    • 77955315863 scopus 로고    scopus 로고
    • Qualitative simulation of large and complex genetic regulation systems, in: Proceedings of European Conference on Artificial Intelligence, Berlin, Germany
    • H. DeJong, M. Page, Qualitative simulation of large and complex genetic regulation systems, in: Proceedings of European Conference on Artificial Intelligence, Berlin, Germany, 2000.
    • (2000)
    • DeJong, H.1    Page, M.2
  • 9
    • 84960377311 scopus 로고    scopus 로고
    • A computational approach to reconstructing gene regulatory networks, in: Proceedings of the IEEE Computer Society Bioinformatics Conference, Stanford, CA
    • X. Deng, H. Ali, A computational approach to reconstructing gene regulatory networks, in: Proceedings of the IEEE Computer Society Bioinformatics Conference, Stanford, CA, 2003.
    • (2003)
    • Deng, X.1    Ali, H.2
  • 10
    • 0032612220 scopus 로고    scopus 로고
    • Linear modeling of mRNA expression levels during CNS development and injury, in: Proceedings of the Pacific Symposium on Biocomputing, Hawaii
    • P. D'haeseleer, X. Wen, S. Fuhrman, R. Somogyi, Linear modeling of mRNA expression levels during CNS development and injury, in: Proceedings of the Pacific Symposium on Biocomputing, Hawaii, 1999.
    • (1999)
    • D'haeseleer, P.1    Wen, X.2    Fuhrman, S.3    Somogyi, R.4
  • 11
    • 0043126917 scopus 로고    scopus 로고
    • Reconstruction of the genetic regulatory dynamics of the rat spinal cord development: local invariants approach
    • Fofanov Y., Pettit B.M. Reconstruction of the genetic regulatory dynamics of the rat spinal cord development: local invariants approach. Journal of Biomedical Informatics 2002, 5-6:343-351.
    • (2002) Journal of Biomedical Informatics , pp. 343-351
    • Fofanov, Y.1    Pettit, B.M.2
  • 12
    • 77955327324 scopus 로고    scopus 로고
    • Gauss network approximation to Bayesian learning, in: Proceedings of the International Joint Conference on Neural Networks
    • F. Forsee, M. Hagan, Gauss network approximation to Bayesian learning, in: Proceedings of the International Joint Conference on Neural Networks, 1997.
    • (1997)
    • Forsee, F.1    Hagan, M.2
  • 14
    • 0035391107 scopus 로고    scopus 로고
    • Pricing and hedging derivative securities with neural networks: Bayesian regularization, early stopping, and bagging, IEEE Transactions on Neural Networks
    • R. Gencay, M. Qi, Pricing and hedging derivative securities with neural networks: Bayesian regularization, early stopping, and bagging, IEEE Transactions on Neural Networks 12 (4) (2001) 726-734.
    • (2001) , vol.12 , Issue.4 , pp. 726-734
    • Gencay, R.1    Qi, M.2
  • 15
    • 0028543366 scopus 로고
    • Training feed-forward networks with the Marquardt algorithm, IEEE Transactions on Neural Networks
    • M. Hagan, M. Menhaj, Training feed-forward networks with the Marquardt algorithm, IEEE Transactions on Neural Networks 5 (6) (1994) 989-993.
    • (1994) , vol.5 , Issue.6 , pp. 989-993
    • Hagan, M.1    Menhaj, M.2
  • 17
    • 61349180117 scopus 로고    scopus 로고
    • Gene regulatory network inference: data integration in dynamic models-a review
    • Hecker M., Lambeck S., Toepfer S., van Someren E., Guthke R. Gene regulatory network inference: data integration in dynamic models-a review. BioSystems 2009, 96:86-103.
    • (2009) BioSystems , vol.96 , pp. 86-103
    • Hecker, M.1    Lambeck, S.2    Toepfer, S.3    van Someren, E.4    Guthke, R.5
  • 19
    • 0348136789 scopus 로고    scopus 로고
    • Reverse engineering of genetic networks with Bayesian networks
    • Husmeier D. Reverse engineering of genetic networks with Bayesian networks. Biochemical Society Transactions 2003, 6:1516-1518.
    • (2003) Biochemical Society Transactions , vol.6 , pp. 1516-1518
    • Husmeier, D.1
  • 20
    • 0344464762 scopus 로고    scopus 로고
    • Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian networks
    • Husmeier D. Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian networks. Bioinformatics 2003, 19(17):2271-2282.
    • (2003) Bioinformatics , vol.19 , Issue.17 , pp. 2271-2282
    • Husmeier, D.1
  • 21
    • 0036207347 scopus 로고    scopus 로고
    • Modeling and simulation of genetic regulatory systems: a literature review
    • Jong H.D. Modeling and simulation of genetic regulatory systems: a literature review. Journal of Computational Biology 2002, 9(1):67-103.
    • (2002) Journal of Computational Biology , vol.9 , Issue.1 , pp. 67-103
    • Jong, H.D.1
  • 23
    • 0014489272 scopus 로고
    • Metabolic stability and epigenesis in randomly constructed genetic nets
    • Kauffman S. Metabolic stability and epigenesis in randomly constructed genetic nets. Journal of Theoretical Biology 1969, 22:437-467.
    • (1969) Journal of Theoretical Biology , vol.22 , pp. 437-467
    • Kauffman, S.1
  • 25
    • 0036075616 scopus 로고    scopus 로고
    • Constructing gene regulatory networks using artificial neural networks, in: Proceedings of the International Joint Conference on Neural Networks, Hawaii
    • E. Keedwell, A. Narayanan, D. Savic, Constructing gene regulatory networks using artificial neural networks, in: Proceedings of the International Joint Conference on Neural Networks, Hawaii, 2002.
    • (2002)
    • Keedwell, E.1    Narayanan, A.2    Savic, D.3
  • 27
    • 77955312075 scopus 로고    scopus 로고
    • Reverse engineering gene networks with artificial neural networks, in: B. Ribeiro et al. (Eds.), Proceedings of the International Conference on Adaptive and Natural Computing Algorithms, Springer
    • A. Krishna, A. Narayanan, E. Keedwell, Reverse engineering gene networks with artificial neural networks, in: B. Ribeiro et al. (Eds.), Proceedings of the International Conference on Adaptive and Natural Computing Algorithms, Springer, 2005.
    • (2005)
    • Krishna, A.1    Narayanan, A.2    Keedwell, E.3
  • 28
    • 0031616241 scopus 로고    scopus 로고
    • Reveal, a general reverse engineering algorithm for inference of genetic network architectures, in: Proceedings of the Pacific Symposium on Biocomputing, Hawaii
    • S. Liang, S. Fuhrman, R. Somogyi, Reveal, a general reverse engineering algorithm for inference of genetic network architectures, in: Proceedings of the Pacific Symposium on Biocomputing, Hawaii, 1998.
    • (1998)
    • Liang, S.1    Fuhrman, S.2    Somogyi, R.3
  • 29
    • 0001025418 scopus 로고
    • Bayesian interpolation, Neural Computation
    • D. MacKay, Bayesian interpolation, Neural Computation 4 (3) (1992) 415-447.
    • (1992) , vol.4 , Issue.3 , pp. 415-447
    • MacKay, D.1
  • 31
    • 77955327887 scopus 로고    scopus 로고
    • in: E.R. Kandal (Ed.), Handbook of Physiology: The Nervous System, American Physiological Society, Bethesda, MD
    • K. Obata, in: E.R. Kandal (Ed.), Handbook of Physiology: The Nervous System, vol. 1, American Physiological Society, Bethesda, MD, 1996.
    • (1996) , vol.1
    • Obata, K.1
  • 32
    • 34848903220 scopus 로고    scopus 로고
    • From correlation to causation networks: a simple approximate learning algorithm and its application to high dimensional plant gene expression data
    • Opgen-Rhein R., Strimmer K. From correlation to causation networks: a simple approximate learning algorithm and its application to high dimensional plant gene expression data. BMC Systems Biology 2007, 1:37.
    • (2007) BMC Systems Biology , vol.1 , pp. 37
    • Opgen-Rhein, R.1    Strimmer, K.2
  • 33
    • 33845569346 scopus 로고    scopus 로고
    • Reverse engineering gene networks to identify key drivers of complex disease phenotypes, Thematic review series: systems biology approaches to metabolic and cardiovascular disorders
    • Schadt E., Lum P. Reverse engineering gene networks to identify key drivers of complex disease phenotypes, Thematic review series: systems biology approaches to metabolic and cardiovascular disorders. Journal of Lipid Research 2006, 47(12):2601-2613.
    • (2006) Journal of Lipid Research , vol.47 , Issue.12 , pp. 2601-2613
    • Schadt, E.1    Lum, P.2
  • 34
    • 70549083891 scopus 로고    scopus 로고
    • Inference of gene regulatory networks using time-series data: a survey
    • Sima C., Hua J., Jung S. Inference of gene regulatory networks using time-series data: a survey. Current Genomics 2009, 10(9):416-429.
    • (2009) Current Genomics , vol.10 , Issue.9 , pp. 416-429
    • Sima, C.1    Hua, J.2    Jung, S.3
  • 35
    • 0000042837 scopus 로고    scopus 로고
    • Evaluating functional network inference using simulation of complex biological systems
    • Smith V., Jarvis E., Hatermink A. Evaluating functional network inference using simulation of complex biological systems. Bioinformatics 2002, 18(Suppl. 1):S216-S224.
    • (2002) Bioinformatics , vol.18 , Issue.SUPPL. 1
    • Smith, V.1    Jarvis, E.2    Hatermink, A.3
  • 36
    • 0141993704 scopus 로고    scopus 로고
    • A gene-coexpression network for global discovery of conserved genetic modules
    • Stuart J., Segal E., Koller D., Kim S. A gene-coexpression network for global discovery of conserved genetic modules. Science 2003, 5643:249-255.
    • (2003) Science , vol.5643 , pp. 249-255
    • Stuart, J.1    Segal, E.2    Koller, D.3    Kim, S.4
  • 38
    • 0034104824 scopus 로고    scopus 로고
    • Coarse-grained reverse engineering of genetic regulatory networks
    • Wahde M., Hertz J. Coarse-grained reverse engineering of genetic regulatory networks. Biosystems 2000, 55:129-136.
    • (2000) Biosystems , vol.55 , pp. 129-136
    • Wahde, M.1    Hertz, J.2
  • 39
    • 36448970861 scopus 로고    scopus 로고
    • Inferring transcriptional regulatory networks from high-throughput data
    • Wang R., Wang Y., Zhang X., Chen L. Inferring transcriptional regulatory networks from high-throughput data. Bioinformatics 2007, 23(22):3056-3964.
    • (2007) Bioinformatics , vol.23 , Issue.22 , pp. 3056-3964
    • Wang, R.1    Wang, Y.2    Zhang, X.3    Chen, L.4
  • 41
    • 34249774309 scopus 로고    scopus 로고
    • Reconstructing gene regulatory networks with Bayesian networks by combining expression data with multiple sources of prior knowledge
    • (Article 1)
    • Werhli A., Husmeier D. Reconstructing gene regulatory networks with Bayesian networks by combining expression data with multiple sources of prior knowledge. Statistical Applications in Genetics and Molecular Biology 2007, 6(1). (Article 1).
    • (2007) Statistical Applications in Genetics and Molecular Biology , vol.6 , Issue.1
    • Werhli, A.1    Husmeier, D.2
  • 42
    • 0037197936 scopus 로고    scopus 로고
    • Reverse engineering gene networks using singular value decomposition and robust regression
    • Yeung M., Tegner J., Collins J. Reverse engineering gene networks using singular value decomposition and robust regression. Proceedings of the National Academy of Sciences 2002, 99(9):6163-6168.
    • (2002) Proceedings of the National Academy of Sciences , vol.99 , Issue.9 , pp. 6163-6168
    • Yeung, M.1    Tegner, J.2    Collins, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.