-
1
-
-
34249740137
-
Reverse engineering of gene regulatory networks
-
K. Cho, S. Choo, S. Jung, J. Kim, H. Choi, and J. Kim Reverse engineering of gene regulatory networks IET Syst. Biol. 1 3 2007 149 163
-
(2007)
IET Syst. Biol.
, vol.1
, Issue.3
, pp. 149-163
-
-
Cho, K.1
Choo, S.2
Jung, S.3
Kim, J.4
Choi, H.5
Kim, J.6
-
2
-
-
0035096538
-
A computational neural approach to support the discovery of gene function and classes of cancer
-
F. Azuaje A computational neural approach to support the discovery of gene function and classes of cancer IEEE Trans. Biomed. Eng. 48 2001 332 339
-
(2001)
IEEE Trans. Biomed. Eng.
, vol.48
, pp. 332-339
-
-
Azuaje, F.1
-
3
-
-
0346972456
-
A neuro-fuzzy approach for functional genomics data interpretation and analysis
-
D. Neagu, and V. Palade A neuro-fuzzy approach for functional genomics data interpretation and analysis Neural Comput. Appl. 12 2003 153 159
-
(2003)
Neural Comput. Appl.
, vol.12
, pp. 153-159
-
-
Neagu, D.1
Palade, V.2
-
4
-
-
33748787668
-
Identification of critical genes in microarray experiments by a neuro-fuzzy approach
-
C. Chen, X. Feng, and J. Szeto Identification of critical genes in microarray experiments by a neuro-fuzzy approach Comput. Biol. Chem. 30 5 2006 372 381
-
(2006)
Comput. Biol. Chem.
, vol.30
, Issue.5
, pp. 372-381
-
-
Chen, C.1
Feng, X.2
Szeto, J.3
-
5
-
-
34249010864
-
Gene networks reconstruction and time-series prediction from microarray data using recurrent neural fuzzy networks
-
I. Maraziotis, A. Dragomir, and A. Bezerianos Gene networks reconstruction and time-series prediction from microarray data using recurrent neural fuzzy networks IET Syst. Biol. 1 1 2007 41 50
-
(2007)
IET Syst. Biol.
, vol.1
, Issue.1
, pp. 41-50
-
-
Maraziotis, I.1
Dragomir, A.2
Bezerianos, A.3
-
6
-
-
0000551189
-
Popular ensemble methods: An empirical study
-
D. Opitz, and R. Maclin Popular ensemble methods: an empirical study J. Artif. Intell. Res. 11 1999 169 198
-
(1999)
J. Artif. Intell. Res.
, vol.11
, pp. 169-198
-
-
Opitz, D.1
MacLin, R.2
-
7
-
-
3142666177
-
An ensemble of neural networks for weather forecasting
-
I. Maqsood, M. Khan, and A. Abraham An ensemble of neural networks for weather forecasting Neural Comput. Appl. 13 2004 112 122
-
(2004)
Neural Comput. Appl.
, vol.13
, pp. 112-122
-
-
Maqsood, I.1
Khan, M.2
Abraham, A.3
-
8
-
-
0032208720
-
The truth will come to light: Directions and challenges inextracting the knowledge embedded within trained artificial neural networks
-
A. Tickle The truth will come to light: directions and challenges inextracting the knowledge embedded within trained artificial neural networks IEEE Trans. Neural Netw. 9 6 1998 1057 1068
-
(1998)
IEEE Trans. Neural Netw.
, vol.9
, Issue.6
, pp. 1057-1068
-
-
Tickle, A.1
-
9
-
-
26444565569
-
Finding structure in time
-
J.L. Elman Finding structure in time Cogn. Sci. 14 1990 179 211
-
(1990)
Cogn. Sci.
, vol.14
, pp. 179-211
-
-
Elman, J.L.1
-
10
-
-
18444364992
-
Rule extraction from recurrent neural networks: A taxonomy and review
-
H. Jacobsson Rule extraction from recurrent neural networks: a taxonomy and review Neural Comput. 17 2005 1223 1263
-
(2005)
Neural Comput.
, vol.17
, pp. 1223-1263
-
-
Jacobsson, H.1
-
11
-
-
33847348163
-
Causality and pathway search in microarray time series experiment
-
N. Mukhopadhyay, and S. Chatterjee Causality and pathway search in microarray time series experiment Bioinformatics 23 4 2007 442 449
-
(2007)
Bioinformatics
, vol.23
, Issue.4
, pp. 442-449
-
-
Mukhopadhyay, N.1
Chatterjee, S.2
-
12
-
-
0036027191
-
Forecasting financial time series using neural network and fuzzy system-based techniques
-
V. Kodogiannis, and A. Lolis Forecasting financial time series using neural network and fuzzy system-based techniques Neural Comput. Appl. 11 2002 90 102
-
(2002)
Neural Comput. Appl.
, vol.11
, pp. 90-102
-
-
Kodogiannis, V.1
Lolis, A.2
-
13
-
-
33846681532
-
Neural network modeling of ecosystems: A case study on cabbage growth system
-
W. Zhang, C. Bai, and G. Liu Neural network modeling of ecosystems: a case study on cabbage growth system Ecol. Model. 201 2007 317 325
-
(2007)
Ecol. Model.
, vol.201
, pp. 317-325
-
-
Zhang, W.1
Bai, C.2
Liu, G.3
-
14
-
-
0029714384
-
Neural networks for time series processing
-
G. Dorffner Neural networks for time series processing Neural Netw. World 6 4 1996 447 468
-
(1996)
Neural Netw. World
, vol.6
, Issue.4
, pp. 447-468
-
-
Dorffner, G.1
-
16
-
-
4043137356
-
A tutorial on support vector regression
-
A. Smola, and B. Scholkopf A tutorial on support vector regression Stat. Comput. 14 2004 199 222
-
(2004)
Stat. Comput.
, vol.14
, pp. 199-222
-
-
Smola, A.1
Scholkopf, B.2
-
17
-
-
0034602774
-
Knowledge-based analysis of microarray gene expression data by using support vector machines
-
M. Brown Knowledge-based analysis of microarray gene expression data by using support vector machines PNAS 97 1 2000 262 267
-
(2000)
PNAS
, vol.97
, Issue.1
, pp. 262-267
-
-
Brown, M.1
-
18
-
-
1542346418
-
A novel method for protein secondary structure prediction using dual-layer SVM and profiles
-
J. Guo, H. Chen, Z. Sun, and Y. Lin A novel method for protein secondary structure prediction using dual-layer SVM and profiles Proteins 54 2004 738 743
-
(2004)
Proteins
, vol.54
, pp. 738-743
-
-
Guo, J.1
Chen, H.2
Sun, Z.3
Lin, Y.4
-
19
-
-
0036161259
-
Gene selection for cancer classification using support vector machines
-
I. Guyon, J. Weston, and S. Barnhill Gene selection for cancer classification using support vector machines Mach. Learn. 46 2002 389 422
-
(2002)
Mach. Learn.
, vol.46
, pp. 389-422
-
-
Guyon, I.1
Weston, J.2
Barnhill, S.3
-
20
-
-
1442275650
-
Enzyme family classification by support vector machines
-
C. Cai, L. Han, Z. Ji, and Y. Chen Enzyme family classification by support vector machines Proteins 55 2004 66 76
-
(2004)
Proteins
, vol.55
, pp. 66-76
-
-
Cai, C.1
Han, L.2
Ji, Z.3
Chen, Y.4
-
21
-
-
84956628443
-
Predicting time series with support vector machines
-
Springer
-
K. Muller, A. Smola, G. Ratsch, B. Scholkopf, J. Kohlmorgen, and V. Vapnik Predicting time series with support vector machines Artificial Neural Networks ICANN'97 Lecture Notes in Computer Science vol. 1327 1997 Springer pp. 999-1004
-
(1997)
Lecture Notes in Computer Science
, vol.1327
-
-
Muller, K.1
Smola, A.2
Ratsch, G.3
Scholkopf, B.4
Kohlmorgen, J.5
Vapnik, V.6
-
23
-
-
33645037239
-
Missing value estimation for DNA microarray gene expression data by support vector regression imputation and orthogonal coding scheme
-
X. Wang, A. Li, Z. Jiang, and H. Feng Missing value estimation for DNA microarray gene expression data by support vector regression imputation and orthogonal coding scheme BMC Bioinform. 7 2006 32
-
(2006)
BMC Bioinform.
, vol.7
, pp. 32
-
-
Wang, X.1
Li, A.2
Jiang, Z.3
Feng, H.4
-
24
-
-
34248572623
-
Boolean dynamics of genetic regulatory networks inferred from microarray time series data
-
S. Martin, Z. Zhang, A. Martino, and J. Faulon Boolean dynamics of genetic regulatory networks inferred from microarray time series data Bioinformatics 23 7 2007 866 874
-
(2007)
Bioinformatics
, vol.23
, Issue.7
, pp. 866-874
-
-
Martin, S.1
Zhang, Z.2
Martino, A.3
Faulon, J.4
-
27
-
-
13244252329
-
A combinational feature selection and ensemble neural network method for classification of gene expression data
-
101186/1471-2105-5-136
-
B. Liu, Q. Cui, T. Jiang, and S. Ma A combinational feature selection and ensemble neural network method for classification of gene expression data BMC Bioinform. 5 2004 136 10.1186/1471-2105-5-136
-
(2004)
BMC Bioinform.
, vol.5
, pp. 136
-
-
Liu, B.1
Cui, Q.2
Jiang, T.3
Ma, S.4
-
28
-
-
0036184629
-
Probabilistics Boolean networks: A rule-based uncertainty model for gene regulatory networks
-
I. Shmulevich, E. Dougherty, S. Kim, and W. Zhang Probabilistics Boolean networks: a rule-based uncertainty model for gene regulatory networks Bioinformatics 18 2 2002 261 274
-
(2002)
Bioinformatics
, vol.18
, Issue.2
, pp. 261-274
-
-
Shmulevich, I.1
Dougherty, E.2
Kim, S.3
Zhang, W.4
-
29
-
-
0038047901
-
On learning gene regulatory networks under the Boolean network model
-
H. Lahdesmaki, I. Shmulevich, and O. Yli-Harja On learning gene regulatory networks under the Boolean network model Mach. Learn. 52 2003 147 167
-
(2003)
Mach. Learn.
, vol.52
, pp. 147-167
-
-
Lahdesmaki, H.1
Shmulevich, I.2
Yli-Harja, O.3
-
30
-
-
0033707946
-
Using Bayesian networks to analyze expression data
-
N. Friedman, M. Linial, I. Nachman, and D. Pe'er Using Bayesian networks to analyze expression data J. Comput. Biol. 7 3/4 2000 601 620
-
(2000)
J. Comput. Biol.
, vol.7
, Issue.3-4
, pp. 601-620
-
-
Friedman, N.1
Linial, M.2
Nachman, I.3
Pe'Er, D.4
-
31
-
-
12744261506
-
A new dynamic Bayesian network (DBN) approach for identifying gene regulatory networks from time course microarray data
-
M. Zou, and S. Conzen A new dynamic Bayesian network (DBN) approach for identifying gene regulatory networks from time course microarray data Bioinformatics 21 1 2005 71 79
-
(2005)
Bioinformatics
, vol.21
, Issue.1
, pp. 71-79
-
-
Zou, M.1
Conzen, S.2
-
32
-
-
0032611513
-
Modeling gene expression with differential equations
-
T. Chen, H. He, and G. Church Modeling gene expression with differential equations Pac. Symp. Biocomput. 1999 29 40
-
(1999)
Pac. Symp. Biocomput.
, pp. 29-40
-
-
Chen, T.1
He, H.2
Church, G.3
-
33
-
-
0036749274
-
Inference of a gene regulatory network by means of interactive evolutionary computing
-
H. Iba, and A. Mimura Inference of a gene regulatory network by means of interactive evolutionary computing Inform. Sci. 145 2002 225 236
-
(2002)
Inform. Sci.
, vol.145
, pp. 225-236
-
-
Iba, H.1
Mimura, A.2
-
34
-
-
0034863951
-
Inferring a system of differential equations for a gene regulatory network by using genetic programming
-
E. Sakamoto, and H. Iba Inferring a system of differential equations for a gene regulatory network by using genetic programming IEEE Proc. Cong. Evol. Comput. 1 2001 720 726
-
(2001)
IEEE Proc. Cong. Evol. Comput.
, vol.1
, pp. 720-726
-
-
Sakamoto, E.1
Iba, H.2
-
35
-
-
0029484103
-
A survey and critique of techniques for extracting rules from trained artificial neural networks
-
R. Andrews, J. Diederich, and A. Tickle A survey and critique of techniques for extracting rules from trained artificial neural networks Knowl. Based Syst. 8 6 1995 373 389
-
(1995)
Knowl. Based Syst.
, vol.8
, Issue.6
, pp. 373-389
-
-
Andrews, R.1
Diederich, J.2
Tickle, A.3
-
36
-
-
0031742022
-
Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization
-
P. Spellman Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization Mol. Biol. Cell 9 1998 3273 3297
-
(1998)
Mol. Biol. Cell
, vol.9
, pp. 3273-3297
-
-
Spellman, P.1
-
37
-
-
13444304426
-
Missing value estimation for DNA microarray gene expression data: Local least squares imputation
-
H. Kim, G. Golub, and H. Park Missing value estimation for DNA microarray gene expression data: local least squares imputation Bioinformatics 21 2 2005 187 198
-
(2005)
Bioinformatics
, vol.21
, Issue.2
, pp. 187-198
-
-
Kim, H.1
Golub, G.2
Park, H.3
-
38
-
-
22744437234
-
The cell cycle-regulated genes of Schizosaccharomyces pombe
-
A. Oliva, A. Rosebrock, F. Ferrezuelo, S. Pyne, H. Chen, S. Skiena, B. Futcher, and J. Leatherwood The cell cycle-regulated genes of Schizosaccharomyces pombe PLOS Biol. 3 7 2005 1239 1260
-
(2005)
PLOS Biol.
, vol.3
, Issue.7
, pp. 1239-1260
-
-
Oliva, A.1
Rosebrock, A.2
Ferrezuelo, F.3
Pyne, S.4
Chen, H.5
Skiena, S.6
Futcher, B.7
Leatherwood, J.8
-
39
-
-
33644649220
-
Discovery of time-delayed gene regulatory networks based on temporal gene expression profiling
-
101186/1471-2105-7-26
-
X. Li, S. Rao, W. Jiang, C. Li, Y. Xiao, Z. Guo, Q. Zhang, L. Wang, L. Du, J. Li, and L. Li Discovery of time-delayed gene regulatory networks based on temporal gene expression profiling BMC Bioinform. 7 2006 26 10.1186/1471-2105-7-26
-
(2006)
BMC Bioinform.
, vol.7
, pp. 26
-
-
Li, X.1
Rao, S.2
Jiang, W.3
Li, C.4
Xiao, Y.5
Guo, Z.6
Zhang, Q.7
Wang, L.8
Du, L.9
Li, J.10
Li, L.11
-
40
-
-
23744502897
-
Inferring yeast cell cycle regulators and interactions using transcription factor activities
-
101186/1471-2164-6-90
-
Y. Yang, J. Suen, M. Brynildsen, S. Galbraith, and J. Liao Inferring yeast cell cycle regulators and interactions using transcription factor activities BMC Genomics 6 2005 90 10.1186/1471-2164-6-90
-
(2005)
BMC Genomics
, vol.6
, pp. 90
-
-
Yang, Y.1
Suen, J.2
Brynildsen, M.3
Galbraith, S.4
Liao, J.5
-
41
-
-
27644466832
-
Combining sequence and time series expression data to learn transcriptional modules
-
A. Kundaje, M. Middendorf, F. Gao, C. Wiggins, and C. Leslie Combining sequence and time series expression data to learn transcriptional modules IEEE/ACM Trans. Comput. Biol. Bioinform. 2 3 2005 194 202
-
(2005)
IEEE/ACM Trans. Comput. Biol. Bioinform.
, vol.2
, Issue.3
, pp. 194-202
-
-
Kundaje, A.1
Middendorf, M.2
Gao, F.3
Wiggins, C.4
Leslie, C.5
-
43
-
-
40849145571
-
Soft computing methods to predict gene regulatory networks: An integrative approach on time-series gene expression data
-
Z. Chan, I. Havukkala, V. Jain, Y. Hu, and N. Kasabov Soft computing methods to predict gene regulatory networks: an integrative approach on time-series gene expression data Appl. Soft Comput. 8 2008 1189 1199
-
(2008)
Appl. Soft Comput.
, vol.8
, pp. 1189-1199
-
-
Chan, Z.1
Havukkala, I.2
Jain, V.3
Hu, Y.4
Kasabov, N.5
-
44
-
-
34047267854
-
Weather analysis using ensemble of connectionist learning paradigms
-
I. Maqsood, and A. Abraham Weather analysis using ensemble of connectionist learning paradigms Appl. Soft Comput. 7 2007 995 1004
-
(2007)
Appl. Soft Comput.
, vol.7
, pp. 995-1004
-
-
Maqsood, I.1
Abraham, A.2
|