메뉴 건너뛰기




Volumn 11, Issue 2, 2011, Pages 1718-1726

Ensemble of Elman neural networks and support vector machines for reverse engineering of gene regulatory networks

Author keywords

Classifier ensembles; Elman neural network; Gene regulatory network; Reverse engineering; Support vector machines

Indexed keywords

CLASSIFIER ENSEMBLES; CONTINUOUS TIME; DATA SETS; ELMAN NEURAL NETWORK; ENSEMBLE SYSTEMS; GENE REGULATORY NETWORK; GENE REGULATORY NETWORKS; INDIVIDUAL MODELS; NETWORK INFERENCE; NONSTATIONARY; PEARSON CORRELATION; PREDICTION ACCURACY; RULE EXTRACTION; STEP TEST; SUPPORT VECTOR; SVM MODEL; TEMPORAL MODELING;

EID: 78751633682     PISSN: 15684946     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.asoc.2010.05.014     Document Type: Conference Paper
Times cited : (34)

References (44)
  • 1
  • 2
    • 0035096538 scopus 로고    scopus 로고
    • A computational neural approach to support the discovery of gene function and classes of cancer
    • F. Azuaje A computational neural approach to support the discovery of gene function and classes of cancer IEEE Trans. Biomed. Eng. 48 2001 332 339
    • (2001) IEEE Trans. Biomed. Eng. , vol.48 , pp. 332-339
    • Azuaje, F.1
  • 3
    • 0346972456 scopus 로고    scopus 로고
    • A neuro-fuzzy approach for functional genomics data interpretation and analysis
    • D. Neagu, and V. Palade A neuro-fuzzy approach for functional genomics data interpretation and analysis Neural Comput. Appl. 12 2003 153 159
    • (2003) Neural Comput. Appl. , vol.12 , pp. 153-159
    • Neagu, D.1    Palade, V.2
  • 4
    • 33748787668 scopus 로고    scopus 로고
    • Identification of critical genes in microarray experiments by a neuro-fuzzy approach
    • C. Chen, X. Feng, and J. Szeto Identification of critical genes in microarray experiments by a neuro-fuzzy approach Comput. Biol. Chem. 30 5 2006 372 381
    • (2006) Comput. Biol. Chem. , vol.30 , Issue.5 , pp. 372-381
    • Chen, C.1    Feng, X.2    Szeto, J.3
  • 5
    • 34249010864 scopus 로고    scopus 로고
    • Gene networks reconstruction and time-series prediction from microarray data using recurrent neural fuzzy networks
    • I. Maraziotis, A. Dragomir, and A. Bezerianos Gene networks reconstruction and time-series prediction from microarray data using recurrent neural fuzzy networks IET Syst. Biol. 1 1 2007 41 50
    • (2007) IET Syst. Biol. , vol.1 , Issue.1 , pp. 41-50
    • Maraziotis, I.1    Dragomir, A.2    Bezerianos, A.3
  • 6
    • 0000551189 scopus 로고    scopus 로고
    • Popular ensemble methods: An empirical study
    • D. Opitz, and R. Maclin Popular ensemble methods: an empirical study J. Artif. Intell. Res. 11 1999 169 198
    • (1999) J. Artif. Intell. Res. , vol.11 , pp. 169-198
    • Opitz, D.1    MacLin, R.2
  • 7
    • 3142666177 scopus 로고    scopus 로고
    • An ensemble of neural networks for weather forecasting
    • I. Maqsood, M. Khan, and A. Abraham An ensemble of neural networks for weather forecasting Neural Comput. Appl. 13 2004 112 122
    • (2004) Neural Comput. Appl. , vol.13 , pp. 112-122
    • Maqsood, I.1    Khan, M.2    Abraham, A.3
  • 8
    • 0032208720 scopus 로고    scopus 로고
    • The truth will come to light: Directions and challenges inextracting the knowledge embedded within trained artificial neural networks
    • A. Tickle The truth will come to light: directions and challenges inextracting the knowledge embedded within trained artificial neural networks IEEE Trans. Neural Netw. 9 6 1998 1057 1068
    • (1998) IEEE Trans. Neural Netw. , vol.9 , Issue.6 , pp. 1057-1068
    • Tickle, A.1
  • 9
    • 26444565569 scopus 로고
    • Finding structure in time
    • J.L. Elman Finding structure in time Cogn. Sci. 14 1990 179 211
    • (1990) Cogn. Sci. , vol.14 , pp. 179-211
    • Elman, J.L.1
  • 10
    • 18444364992 scopus 로고    scopus 로고
    • Rule extraction from recurrent neural networks: A taxonomy and review
    • H. Jacobsson Rule extraction from recurrent neural networks: a taxonomy and review Neural Comput. 17 2005 1223 1263
    • (2005) Neural Comput. , vol.17 , pp. 1223-1263
    • Jacobsson, H.1
  • 11
    • 33847348163 scopus 로고    scopus 로고
    • Causality and pathway search in microarray time series experiment
    • N. Mukhopadhyay, and S. Chatterjee Causality and pathway search in microarray time series experiment Bioinformatics 23 4 2007 442 449
    • (2007) Bioinformatics , vol.23 , Issue.4 , pp. 442-449
    • Mukhopadhyay, N.1    Chatterjee, S.2
  • 12
    • 0036027191 scopus 로고    scopus 로고
    • Forecasting financial time series using neural network and fuzzy system-based techniques
    • V. Kodogiannis, and A. Lolis Forecasting financial time series using neural network and fuzzy system-based techniques Neural Comput. Appl. 11 2002 90 102
    • (2002) Neural Comput. Appl. , vol.11 , pp. 90-102
    • Kodogiannis, V.1    Lolis, A.2
  • 13
    • 33846681532 scopus 로고    scopus 로고
    • Neural network modeling of ecosystems: A case study on cabbage growth system
    • W. Zhang, C. Bai, and G. Liu Neural network modeling of ecosystems: a case study on cabbage growth system Ecol. Model. 201 2007 317 325
    • (2007) Ecol. Model. , vol.201 , pp. 317-325
    • Zhang, W.1    Bai, C.2    Liu, G.3
  • 14
    • 0029714384 scopus 로고    scopus 로고
    • Neural networks for time series processing
    • G. Dorffner Neural networks for time series processing Neural Netw. World 6 4 1996 447 468
    • (1996) Neural Netw. World , vol.6 , Issue.4 , pp. 447-468
    • Dorffner, G.1
  • 16
    • 4043137356 scopus 로고    scopus 로고
    • A tutorial on support vector regression
    • A. Smola, and B. Scholkopf A tutorial on support vector regression Stat. Comput. 14 2004 199 222
    • (2004) Stat. Comput. , vol.14 , pp. 199-222
    • Smola, A.1    Scholkopf, B.2
  • 17
    • 0034602774 scopus 로고    scopus 로고
    • Knowledge-based analysis of microarray gene expression data by using support vector machines
    • M. Brown Knowledge-based analysis of microarray gene expression data by using support vector machines PNAS 97 1 2000 262 267
    • (2000) PNAS , vol.97 , Issue.1 , pp. 262-267
    • Brown, M.1
  • 18
    • 1542346418 scopus 로고    scopus 로고
    • A novel method for protein secondary structure prediction using dual-layer SVM and profiles
    • J. Guo, H. Chen, Z. Sun, and Y. Lin A novel method for protein secondary structure prediction using dual-layer SVM and profiles Proteins 54 2004 738 743
    • (2004) Proteins , vol.54 , pp. 738-743
    • Guo, J.1    Chen, H.2    Sun, Z.3    Lin, Y.4
  • 19
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • I. Guyon, J. Weston, and S. Barnhill Gene selection for cancer classification using support vector machines Mach. Learn. 46 2002 389 422
    • (2002) Mach. Learn. , vol.46 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3
  • 20
    • 1442275650 scopus 로고    scopus 로고
    • Enzyme family classification by support vector machines
    • C. Cai, L. Han, Z. Ji, and Y. Chen Enzyme family classification by support vector machines Proteins 55 2004 66 76
    • (2004) Proteins , vol.55 , pp. 66-76
    • Cai, C.1    Han, L.2    Ji, Z.3    Chen, Y.4
  • 23
    • 33645037239 scopus 로고    scopus 로고
    • Missing value estimation for DNA microarray gene expression data by support vector regression imputation and orthogonal coding scheme
    • X. Wang, A. Li, Z. Jiang, and H. Feng Missing value estimation for DNA microarray gene expression data by support vector regression imputation and orthogonal coding scheme BMC Bioinform. 7 2006 32
    • (2006) BMC Bioinform. , vol.7 , pp. 32
    • Wang, X.1    Li, A.2    Jiang, Z.3    Feng, H.4
  • 24
    • 34248572623 scopus 로고    scopus 로고
    • Boolean dynamics of genetic regulatory networks inferred from microarray time series data
    • S. Martin, Z. Zhang, A. Martino, and J. Faulon Boolean dynamics of genetic regulatory networks inferred from microarray time series data Bioinformatics 23 7 2007 866 874
    • (2007) Bioinformatics , vol.23 , Issue.7 , pp. 866-874
    • Martin, S.1    Zhang, Z.2    Martino, A.3    Faulon, J.4
  • 27
    • 13244252329 scopus 로고    scopus 로고
    • A combinational feature selection and ensemble neural network method for classification of gene expression data
    • 101186/1471-2105-5-136
    • B. Liu, Q. Cui, T. Jiang, and S. Ma A combinational feature selection and ensemble neural network method for classification of gene expression data BMC Bioinform. 5 2004 136 10.1186/1471-2105-5-136
    • (2004) BMC Bioinform. , vol.5 , pp. 136
    • Liu, B.1    Cui, Q.2    Jiang, T.3    Ma, S.4
  • 28
    • 0036184629 scopus 로고    scopus 로고
    • Probabilistics Boolean networks: A rule-based uncertainty model for gene regulatory networks
    • I. Shmulevich, E. Dougherty, S. Kim, and W. Zhang Probabilistics Boolean networks: a rule-based uncertainty model for gene regulatory networks Bioinformatics 18 2 2002 261 274
    • (2002) Bioinformatics , vol.18 , Issue.2 , pp. 261-274
    • Shmulevich, I.1    Dougherty, E.2    Kim, S.3    Zhang, W.4
  • 29
    • 0038047901 scopus 로고    scopus 로고
    • On learning gene regulatory networks under the Boolean network model
    • H. Lahdesmaki, I. Shmulevich, and O. Yli-Harja On learning gene regulatory networks under the Boolean network model Mach. Learn. 52 2003 147 167
    • (2003) Mach. Learn. , vol.52 , pp. 147-167
    • Lahdesmaki, H.1    Shmulevich, I.2    Yli-Harja, O.3
  • 30
    • 0033707946 scopus 로고    scopus 로고
    • Using Bayesian networks to analyze expression data
    • N. Friedman, M. Linial, I. Nachman, and D. Pe'er Using Bayesian networks to analyze expression data J. Comput. Biol. 7 3/4 2000 601 620
    • (2000) J. Comput. Biol. , vol.7 , Issue.3-4 , pp. 601-620
    • Friedman, N.1    Linial, M.2    Nachman, I.3    Pe'Er, D.4
  • 31
    • 12744261506 scopus 로고    scopus 로고
    • A new dynamic Bayesian network (DBN) approach for identifying gene regulatory networks from time course microarray data
    • M. Zou, and S. Conzen A new dynamic Bayesian network (DBN) approach for identifying gene regulatory networks from time course microarray data Bioinformatics 21 1 2005 71 79
    • (2005) Bioinformatics , vol.21 , Issue.1 , pp. 71-79
    • Zou, M.1    Conzen, S.2
  • 32
    • 0032611513 scopus 로고    scopus 로고
    • Modeling gene expression with differential equations
    • T. Chen, H. He, and G. Church Modeling gene expression with differential equations Pac. Symp. Biocomput. 1999 29 40
    • (1999) Pac. Symp. Biocomput. , pp. 29-40
    • Chen, T.1    He, H.2    Church, G.3
  • 33
    • 0036749274 scopus 로고    scopus 로고
    • Inference of a gene regulatory network by means of interactive evolutionary computing
    • H. Iba, and A. Mimura Inference of a gene regulatory network by means of interactive evolutionary computing Inform. Sci. 145 2002 225 236
    • (2002) Inform. Sci. , vol.145 , pp. 225-236
    • Iba, H.1    Mimura, A.2
  • 34
    • 0034863951 scopus 로고    scopus 로고
    • Inferring a system of differential equations for a gene regulatory network by using genetic programming
    • E. Sakamoto, and H. Iba Inferring a system of differential equations for a gene regulatory network by using genetic programming IEEE Proc. Cong. Evol. Comput. 1 2001 720 726
    • (2001) IEEE Proc. Cong. Evol. Comput. , vol.1 , pp. 720-726
    • Sakamoto, E.1    Iba, H.2
  • 35
    • 0029484103 scopus 로고
    • A survey and critique of techniques for extracting rules from trained artificial neural networks
    • R. Andrews, J. Diederich, and A. Tickle A survey and critique of techniques for extracting rules from trained artificial neural networks Knowl. Based Syst. 8 6 1995 373 389
    • (1995) Knowl. Based Syst. , vol.8 , Issue.6 , pp. 373-389
    • Andrews, R.1    Diederich, J.2    Tickle, A.3
  • 36
    • 0031742022 scopus 로고    scopus 로고
    • Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization
    • P. Spellman Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization Mol. Biol. Cell 9 1998 3273 3297
    • (1998) Mol. Biol. Cell , vol.9 , pp. 3273-3297
    • Spellman, P.1
  • 37
    • 13444304426 scopus 로고    scopus 로고
    • Missing value estimation for DNA microarray gene expression data: Local least squares imputation
    • H. Kim, G. Golub, and H. Park Missing value estimation for DNA microarray gene expression data: local least squares imputation Bioinformatics 21 2 2005 187 198
    • (2005) Bioinformatics , vol.21 , Issue.2 , pp. 187-198
    • Kim, H.1    Golub, G.2    Park, H.3
  • 39
    • 33644649220 scopus 로고    scopus 로고
    • Discovery of time-delayed gene regulatory networks based on temporal gene expression profiling
    • 101186/1471-2105-7-26
    • X. Li, S. Rao, W. Jiang, C. Li, Y. Xiao, Z. Guo, Q. Zhang, L. Wang, L. Du, J. Li, and L. Li Discovery of time-delayed gene regulatory networks based on temporal gene expression profiling BMC Bioinform. 7 2006 26 10.1186/1471-2105-7-26
    • (2006) BMC Bioinform. , vol.7 , pp. 26
    • Li, X.1    Rao, S.2    Jiang, W.3    Li, C.4    Xiao, Y.5    Guo, Z.6    Zhang, Q.7    Wang, L.8    Du, L.9    Li, J.10    Li, L.11
  • 40
    • 23744502897 scopus 로고    scopus 로고
    • Inferring yeast cell cycle regulators and interactions using transcription factor activities
    • 101186/1471-2164-6-90
    • Y. Yang, J. Suen, M. Brynildsen, S. Galbraith, and J. Liao Inferring yeast cell cycle regulators and interactions using transcription factor activities BMC Genomics 6 2005 90 10.1186/1471-2164-6-90
    • (2005) BMC Genomics , vol.6 , pp. 90
    • Yang, Y.1    Suen, J.2    Brynildsen, M.3    Galbraith, S.4    Liao, J.5
  • 43
    • 40849145571 scopus 로고    scopus 로고
    • Soft computing methods to predict gene regulatory networks: An integrative approach on time-series gene expression data
    • Z. Chan, I. Havukkala, V. Jain, Y. Hu, and N. Kasabov Soft computing methods to predict gene regulatory networks: an integrative approach on time-series gene expression data Appl. Soft Comput. 8 2008 1189 1199
    • (2008) Appl. Soft Comput. , vol.8 , pp. 1189-1199
    • Chan, Z.1    Havukkala, I.2    Jain, V.3    Hu, Y.4    Kasabov, N.5
  • 44
    • 34047267854 scopus 로고    scopus 로고
    • Weather analysis using ensemble of connectionist learning paradigms
    • I. Maqsood, and A. Abraham Weather analysis using ensemble of connectionist learning paradigms Appl. Soft Comput. 7 2007 995 1004
    • (2007) Appl. Soft Comput. , vol.7 , pp. 995-1004
    • Maqsood, I.1    Abraham, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.