메뉴 건너뛰기




Volumn 32, Issue 7, 2008, Pages 1159-1178

Rule generation for hierarchical collaborative fuzzy system

Author keywords

Fuzzy clustering; Fuzzy modelling; Hierarchical fuzzy systems

Indexed keywords

COMPUTER SIMULATION; FUZZY CLUSTERING; FUZZY RULES; HIERARCHICAL SYSTEMS; LEARNING SYSTEMS; MATHEMATICAL MODELS; PARALLEL ALGORITHMS;

EID: 40649121069     PISSN: 0307904X     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.apm.2007.03.007     Document Type: Article
Times cited : (32)

References (35)
  • 1
    • 34248666540 scopus 로고
    • Fuzzy sets
    • Zadeh L.A. Fuzzy sets. Inf. Control 8 (1965) 338-353
    • (1965) Inf. Control , vol.8 , pp. 338-353
    • Zadeh, L.A.1
  • 4
    • 0033364901 scopus 로고    scopus 로고
    • Synergistic modeling and application of hierarchical fuzzy neural networks
    • Kung S.-Y., Taur J., and Lin S.-H. Synergistic modeling and application of hierarchical fuzzy neural networks. Proc. IEEE 87 9 (1999) 1550-1574
    • (1999) Proc. IEEE , vol.87 , Issue.9 , pp. 1550-1574
    • Kung, S.-Y.1    Taur, J.2    Lin, S.-H.3
  • 5
    • 0030385720 scopus 로고    scopus 로고
    • J.S. Jang, Input selection for ANFIS learning, in: Proc. IEEE Int. Conf. Fuzzy Syst. (FUZZ-IEEE'96), New Orleans, LA, 1996, pp. 1493-1499.
    • J.S. Jang, Input selection for ANFIS learning, in: Proc. IEEE Int. Conf. Fuzzy Syst. (FUZZ-IEEE'96), New Orleans, LA, 1996, pp. 1493-1499.
  • 6
    • 0030718686 scopus 로고    scopus 로고
    • T. Nakashima, T. Morisawa, H. Ishibuchi, Input selection in fuzzy rule-based classification systems, in: Proc. IEEE Int. Conf. Fuzzy Syst. (FUZZ-IEEE'97), Barcelona, Spain, 1997, pp. 1457-1462.
    • T. Nakashima, T. Morisawa, H. Ishibuchi, Input selection in fuzzy rule-based classification systems, in: Proc. IEEE Int. Conf. Fuzzy Syst. (FUZZ-IEEE'97), Barcelona, Spain, 1997, pp. 1457-1462.
  • 8
    • 0031187917 scopus 로고    scopus 로고
    • Necessary conditions for some typical fuzzy systems as universal approximators
    • Ying H., and Chen G. Necessary conditions for some typical fuzzy systems as universal approximators. Automatica 33 7 (1997) 1333-1338
    • (1997) Automatica , vol.33 , Issue.7 , pp. 1333-1338
    • Ying, H.1    Chen, G.2
  • 9
    • 0029234186 scopus 로고    scopus 로고
    • M. Brown, K.M. Bossley, D.J. Mills, C.J. Harris, High dimensional neurofuzzy systems: Overcoming the curse of dimensionality, in: Proc. Int. Joint Conf. on Fuzzy Systems and the 2nd Int. Fuzzy Engineering Symp. Yokohama, Japan, March 1995, pp. 2139-2146.
    • M. Brown, K.M. Bossley, D.J. Mills, C.J. Harris, High dimensional neurofuzzy systems: Overcoming the curse of dimensionality, in: Proc. Int. Joint Conf. on Fuzzy Systems and the 2nd Int. Fuzzy Engineering Symp. Yokohama, Japan, March 1995, pp. 2139-2146.
  • 10
    • 0742320762 scopus 로고    scopus 로고
    • Rule-base self-generation and simplification for data-driven fuzzy models
    • Chen M.-Y., and Linkens D.A. Rule-base self-generation and simplification for data-driven fuzzy models. Fuzzy Sets Syst. 142 (2004) 243-265
    • (2004) Fuzzy Sets Syst. , vol.142 , pp. 243-265
    • Chen, M.-Y.1    Linkens, D.A.2
  • 11
    • 0033204912 scopus 로고    scopus 로고
    • Analysis and design of hierarchical fuzzy systems
    • Wang L.-X. Analysis and design of hierarchical fuzzy systems. IEEE Trans. Fuzzy Syst. 7 5 (1999) 617-624
    • (1999) IEEE Trans. Fuzzy Syst. , vol.7 , Issue.5 , pp. 617-624
    • Wang, L.-X.1
  • 12
    • 0001263821 scopus 로고    scopus 로고
    • Universal approximation by hierarchical fuzzy systems
    • Wang L.X. Universal approximation by hierarchical fuzzy systems. Fuzzy Sets Syst. 93 (1998) 223-230
    • (1998) Fuzzy Sets Syst. , vol.93 , pp. 223-230
    • Wang, L.X.1
  • 14
    • 0003077756 scopus 로고    scopus 로고
    • A new approach of multi-stage fuzzy logic inference
    • Chen H.P., and Parng T.M. A new approach of multi-stage fuzzy logic inference. Fuzzy Sets Syst. 78 (1996) 51-72
    • (1996) Fuzzy Sets Syst. , vol.78 , pp. 51-72
    • Chen, H.P.1    Parng, T.M.2
  • 15
    • 0033721191 scopus 로고    scopus 로고
    • On multistage fuzzy neural network modeling
    • Chung F.-L., and Duan J.-C. On multistage fuzzy neural network modeling. IEEE Trans. Fuzzy Syst. 8 2 (2000) 125-142
    • (2000) IEEE Trans. Fuzzy Syst. , vol.8 , Issue.2 , pp. 125-142
    • Chung, F.-L.1    Duan, J.-C.2
  • 16
    • 0032002594 scopus 로고    scopus 로고
    • On the construction of hierarchical fuzzy systems models
    • Yager R.R. On the construction of hierarchical fuzzy systems models. IEEE Trans. Syst. Man Cybern. - Part C 28 1 (1998) 55-66
    • (1998) IEEE Trans. Syst. Man Cybern. - Part C , vol.28 , Issue.1 , pp. 55-66
    • Yager, R.R.1
  • 17
    • 0036570765 scopus 로고    scopus 로고
    • A structure identification method of submodels for hierarchical fuzzy modeling using the multiple objective genetic algorithm
    • Tachibana, Kanta, and Furuhashi. A structure identification method of submodels for hierarchical fuzzy modeling using the multiple objective genetic algorithm. Int. J. Intell. Syst. 17 (2002) 495-513
    • (2002) Int. J. Intell. Syst. , vol.17 , pp. 495-513
    • Tachibana1    Kanta2    Furuhashi3
  • 19
    • 0033177661 scopus 로고    scopus 로고
    • Function approximation based on fuzzy rules extracted from partitioned numerical data
    • Thawonmas R. Function approximation based on fuzzy rules extracted from partitioned numerical data. IEEE Trans. Syst. Man Cybern. 29 4 (1999) 525-534
    • (1999) IEEE Trans. Syst. Man Cybern. , vol.29 , Issue.4 , pp. 525-534
    • Thawonmas, R.1
  • 20
    • 0031275772 scopus 로고    scopus 로고
    • Using fuzzy partitions to create fuzzy systems from input-output data and set the initial weights in a fuzzy neural network
    • Lin Y., Cunningham III G.A., and Coggeshall S.V. Using fuzzy partitions to create fuzzy systems from input-output data and set the initial weights in a fuzzy neural network. IEEE Trans. Fuzzy Syst. 5 (1997) 614-621
    • (1997) IEEE Trans. Fuzzy Syst. , vol.5 , pp. 614-621
    • Lin, Y.1    Cunningham III, G.A.2    Coggeshall, S.V.3
  • 21
    • 0030130047 scopus 로고    scopus 로고
    • Simplification of fuzzy-neural systems using similarity analysis
    • Chao C.T., Chen Y.J., and Teng C.C. Simplification of fuzzy-neural systems using similarity analysis. IEEE Trans. Syst. Man. Cybern. 26 2 (1996) 344-354
    • (1996) IEEE Trans. Syst. Man. Cybern. , vol.26 , Issue.2 , pp. 344-354
    • Chao, C.T.1    Chen, Y.J.2    Teng, C.C.3
  • 23
    • 0032595185 scopus 로고    scopus 로고
    • Alternating cluster estimation: A new tool for clustering and function approximation
    • Runkler T.A., and Bezdek J.C. Alternating cluster estimation: A new tool for clustering and function approximation. IEEE Trans. Fuzzy Syst. 7 4 (1999) 377-393
    • (1999) IEEE Trans. Fuzzy Syst. , vol.7 , Issue.4 , pp. 377-393
    • Runkler, T.A.1    Bezdek, J.C.2
  • 24
    • 0033279902 scopus 로고    scopus 로고
    • A hybrid clustering and gradient descent approach for fuzzy modelling
    • Wong C.-C., and Chen C.-C. A hybrid clustering and gradient descent approach for fuzzy modelling. IEEE Trans. Man. Cybern. B 29 (1999) 686-693
    • (1999) IEEE Trans. Man. Cybern. B , vol.29 , pp. 686-693
    • Wong, C.-C.1    Chen, C.-C.2
  • 25
    • 0036791593 scopus 로고    scopus 로고
    • Modified Gath-Geva Fuzzy Clustering for Identification of Takagi-Sugeno Fuzzy Models
    • Abonyi J., Babuška R., and Szeifert F. Modified Gath-Geva Fuzzy Clustering for Identification of Takagi-Sugeno Fuzzy Models. IEEE Trans. Syst. Man Cybern. - Part B 32 5 (2002) 612-621
    • (2002) IEEE Trans. Syst. Man Cybern. - Part B , vol.32 , Issue.5 , pp. 612-621
    • Abonyi, J.1    Babuška, R.2    Szeifert, F.3
  • 26
    • 13144307180 scopus 로고    scopus 로고
    • P. Salgado, J. Boaventura, Greenhouse climate hierarchical fuzzy modelling, Control Eng. Pract. 13(5) 613-628.
    • P. Salgado, J. Boaventura, Greenhouse climate hierarchical fuzzy modelling, Control Eng. Pract. 13(5) 613-628.
  • 27
    • 0031140178 scopus 로고    scopus 로고
    • Rule-based modelling of nonlinear relationships
    • Pedcrycz W., and Reformat M. Rule-based modelling of nonlinear relationships. IEEE Trans. Fuzzy Syst. 5 2 (1997) 256-269
    • (1997) IEEE Trans. Fuzzy Syst. , vol.5 , Issue.2 , pp. 256-269
    • Pedcrycz, W.1    Reformat, M.2
  • 28
    • 0038476162 scopus 로고    scopus 로고
    • Averaging procedures in defuzzification processes
    • Roventa E., and Spircu T. Averaging procedures in defuzzification processes. Fuzzy Sets Syst. 136 (2003) 375-385
    • (2003) Fuzzy Sets Syst. , vol.136 , pp. 375-385
    • Roventa, E.1    Spircu, T.2
  • 29
    • 40649105683 scopus 로고    scopus 로고
    • Springer-Verlag
    • Salgado P. Clustering and hierarchization of fuzzy systems. Soft Computing Journal (2006), Springer-Verlag
    • (2006) Soft Computing Journal
    • Salgado, P.1
  • 30
    • 0027601884 scopus 로고
    • ANFIS: Adaptive-network-based fuzzy inference system
    • Jang J.S. ANFIS: Adaptive-network-based fuzzy inference system. IEEE Trans. Syst. Man Cybern. 23 (1993) 665-684
    • (1993) IEEE Trans. Syst. Man Cybern. , vol.23 , pp. 665-684
    • Jang, J.S.1
  • 31
    • 0033611505 scopus 로고    scopus 로고
    • Cluster-weighted modelling for time-series analysis
    • Gershenfeld N., Schoner B., and Metois E. Cluster-weighted modelling for time-series analysis. Nature 397 (1999) 329-332
    • (1999) Nature , vol.397 , pp. 329-332
    • Gershenfeld, N.1    Schoner, B.2    Metois, E.3
  • 33
    • 84942737910 scopus 로고
    • Fitting autoregressive models for prediction
    • Akaike H. Fitting autoregressive models for prediction. Ann. Inst. Statist. Math. 21 (1969) 425-439
    • (1969) Ann. Inst. Statist. Math. , vol.21 , pp. 425-439
    • Akaike, H.1
  • 34
    • 0035502898 scopus 로고    scopus 로고
    • Neurofuzzy mixture of experts network parallel learning and model construction algorithms
    • Harris C.J., and Hong X. Neurofuzzy mixture of experts network parallel learning and model construction algorithms. IEE Proc. Control Theory Appl. 148 6 (2001) 456-465
    • (2001) IEE Proc. Control Theory Appl. , vol.148 , Issue.6 , pp. 456-465
    • Harris, C.J.1    Hong, X.2
  • 35
    • 0036738761 scopus 로고    scopus 로고
    • Nonlinear model structure design and construction using orthogonal least squares and D-optimality design
    • Hong X., and Harris C.J. Nonlinear model structure design and construction using orthogonal least squares and D-optimality design. IEEE Trans. Neural Networks 13 5 (2002) 1245-1250
    • (2002) IEEE Trans. Neural Networks , vol.13 , Issue.5 , pp. 1245-1250
    • Hong, X.1    Harris, C.J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.