메뉴 건너뛰기




Volumn 3, Issue 3, 2001, Pages 217-232

Thematic mapping from remotely sensed data with neural networks: MLP, RBF and PNN based approaches

Author keywords

Classification; Neural networks; Remote sensing

Indexed keywords


EID: 1342343252     PISSN: 14355930     EISSN: None     Source Type: Journal    
DOI: 10.1007/PL00011477     Document Type: Article
Times cited : (33)

References (33)
  • 2
  • 4
    • 0030303473 scopus 로고    scopus 로고
    • Remote mineralogic and lithologic mapping of the Ice River Alkaline Complex, British Columbia, Canada, using AVIRIS data
    • Bowers TL, Rowan LC (1996) Remote mineralogic and lithologic mapping of the Ice River Alkaline Complex, British Columbia, Canada, using AVIRIS data. Photogrammetric Engineering and Remote Sensing 62: 1379-1385
    • (1996) Photogrammetric Engineering and Remote Sensing , vol.62 , pp. 1379-1385
    • Bowers, T.L.1    Rowan, L.C.2
  • 5
    • 0033099197 scopus 로고    scopus 로고
    • A technique for the selection of kerner-function parameters in RBF neural networks for classification of remote sensing images
    • Bruzzone L, Prieto DF (1999) A technique for the selection of kerner-function parameters in RBF neural networks for classification of remote sensing images. IEEE Transactions on Geoscience and Remote Sensing 37: 1179-1184
    • (1999) IEEE Transactions on Geoscience and Remote Sensing , vol.37 , pp. 1179-1184
    • Bruzzone, L.1    Prieto, D.F.2
  • 7
    • 0002983234 scopus 로고    scopus 로고
    • Remote sensing applications which may be addressed by neural networks using parallel processing technology
    • Kanellopoulos I, Wilkinson GG, Roli F, Austin J (eds) Springer, Berlin Heidelberg New York
    • Day C (1997) Remote sensing applications which may be addressed by neural networks using parallel processing technology. In: Kanellopoulos I, Wilkinson GG, Roli F, Austin J (eds) Neuro-computation in remote sensing data analysis. Springer, Berlin Heidelberg New York, pp 262-279
    • (1997) Neuro-computation in Remote Sensing Data Analysis , pp. 262-279
    • Day, C.1
  • 8
    • 0000853761 scopus 로고    scopus 로고
    • Classification accuracy improvement of neural network classifiers by using unlabeled data
    • Fardanesh MT, Ersoy OK (1998) Classification accuracy improvement of neural network classifiers by using unlabeled data. IEEE Transactions on Geoscience and Remote Sensing 36: 1020-1025
    • (1998) IEEE Transactions on Geoscience and Remote Sensing , vol.36 , pp. 1020-1025
    • Fardanesh, M.T.1    Ersoy, O.K.2
  • 9
    • 0032458753 scopus 로고    scopus 로고
    • Computational neural networks a new paradigm for spatial analysis
    • Fischer MM (1998) Computational neural networks a new paradigm for spatial analysis. Environment and Planning A 30: 1873-1891
    • (1998) Environment and Planning A , vol.30 , pp. 1873-1891
    • Fischer, M.M.1
  • 10
    • 0032769079 scopus 로고    scopus 로고
    • Optimization in an error backpropagation neural network environment with a performance test on a spectral pattern classification problem
    • Fischer MM, Staufer P (1999) Optimization in an error backpropagation neural network environment with a performance test on a spectral pattern classification problem. Geographical Analysis 31: 89-108
    • (1999) Geographical Analysis , vol.31 , pp. 89-108
    • Fischer, M.M.1    Staufer, P.2
  • 11
    • 0008096229 scopus 로고    scopus 로고
    • Evaluation of neural pattern classifiers for a remote sensing application
    • Fischer MM, Gopal S, Staufer P, Steinnocher K (1997) Evaluation of neural pattern classifiers for a remote sensing application. Geographical Systems 4: 195-225
    • (1997) Geographical Systems , vol.4 , pp. 195-225
    • Fischer, M.M.1    Gopal, S.2    Staufer, P.3    Steinnocher, K.4
  • 12
    • 0346256369 scopus 로고
    • Training pattern replication and weighted class allocation in artificial neural network classification
    • Foody GM (1995) Training pattern replication and weighted class allocation in artificial neural network classification. Neural Computing and Applications 3: 178-190
    • (1995) Neural Computing and Applications , vol.3 , pp. 178-190
    • Foody, G.M.1
  • 13
    • 0037144618 scopus 로고    scopus 로고
    • Hard and soft classifications by a neural network with a non-exhaustively defined set of classes
    • in press
    • Foody GM (2002) Hard and soft classifications by a neural network with a non-exhaustively defined set of classes. International Journal of Remote Sensing (in press)
    • (2002) International Journal of Remote Sensing
    • Foody, G.M.1
  • 14
    • 0031105722 scopus 로고    scopus 로고
    • An evaluation of some factors affecting the accuracy of classification by an artificial neural network
    • Foody GM, Arora MK (1997) An evaluation of some factors affecting the accuracy of classification by an artificial neural network. International Journal of Remote Sensing 18: 799-810
    • (1997) International Journal of Remote Sensing , vol.18 , pp. 799-810
    • Foody, G.M.1    Arora, M.K.2
  • 15
    • 0029473455 scopus 로고
    • The effect of training set size and composition on artificial neural network classification
    • Foody GM, McCulloch MB, Yates WB (1995) The effect of training set size and composition on artificial neural network classification. International Journal of Remote Sensing 16: 1707-1723
    • (1995) International Journal of Remote Sensing , vol.16 , pp. 1707-1723
    • Foody, G.M.1    McCulloch, M.B.2    Yates, W.B.3
  • 17
    • 0026924052 scopus 로고
    • RCE classifiers - Theory and practice
    • Hudak MJ (1992) RCE classifiers - theory and practice. Cybernetics and Systems 23: 483-515
    • (1992) Cybernetics and Systems , vol.23 , pp. 483-515
    • Hudak, M.J.1
  • 21
    • 0029341018 scopus 로고
    • A detailed comparison of backpropagation neural network and maximum likelihood classification for urban land use classification
    • Paola JD, Schowengerdt RA (1995) A detailed comparison of backpropagation neural network and maximum likelihood classification for urban land use classification. IEEE Transactions on Geoscience and Remote Sensing 33: 981-996
    • (1995) IEEE Transactions on Geoscience and Remote Sensing , vol.33 , pp. 981-996
    • Paola, J.D.1    Schowengerdt, R.A.2
  • 22
    • 0028740098 scopus 로고
    • Multisource image classification II: An empirical comparison of evidential reasoning and neural network approaches
    • Peddle DR, Foody GM, Zhang A, Frankilin SE, LeDrew EF (1994) Multisource image classification II: an empirical comparison of evidential reasoning and neural network approaches. Canadian Journal of Remote Sensing 20: 396-407
    • (1994) Canadian Journal of Remote Sensing , vol.20 , pp. 396-407
    • Peddle, D.R.1    Foody, G.M.2    Zhang, A.3    Frankilin, S.E.4    LeDrew, E.F.5
  • 24
    • 0032844143 scopus 로고    scopus 로고
    • Thematic validation of high-resolution global land-cover data sets
    • Scepan J (1999) Thematic validation of high-resolution global land-cover data sets. Photogrammetric Engineering and Remote Sensing 65: 1051-1060
    • (1999) Photogrammetric Engineering and Remote Sensing , vol.65 , pp. 1051-1060
    • Scepan, J.1
  • 26
    • 0028499630 scopus 로고
    • The effect of unlabeled samples in reducing the small sample-size problem and mitigating the Hughes phenomenon
    • Shahshahani BM, Landgrebe DA (1994) The effect of unlabeled samples in reducing the small sample-size problem and mitigating the Hughes phenomenon. IEEE Transactions on Geoscience and Remote Sensing 32: 1087-1095
    • (1994) IEEE Transactions on Geoscience and Remote Sensing , vol.32 , pp. 1087-1095
    • Shahshahani, B.M.1    Landgrebe, D.A.2
  • 27
    • 0342962686 scopus 로고    scopus 로고
    • Spectral pattern recognition by a two-layer perceptron: Effects of training set size
    • Kanellopoulos, I, Wilkinson GG, Roli F, Austin J (eds) Springer, Berlin Heidelberg New York
    • Staufer P, Fisher MM (1997) Spectral pattern recognition by a two-layer perceptron: Effects of training set size. In: Kanellopoulos, I, Wilkinson GG, Roli F, Austin J (eds) Neurocomputation in remote sensing data analysis. Springer, Berlin Heidelberg New York, pp 105-116
    • (1997) Neurocomputation in Remote Sensing Data Analysis , pp. 105-116
    • Staufer, P.1    Fisher, M.M.2
  • 28
    • 0031255580 scopus 로고    scopus 로고
    • Selecting and interpreting measures of thematic classification accuracy
    • Stehman SV (1997) Selecting and interpreting measures of thematic classification accuracy. Remote Sensing of Environment 62: 77-89
    • (1997) Remote Sensing of Environment , vol.62 , pp. 77-89
    • Stehman, S.V.1
  • 29
    • 0019227654 scopus 로고
    • The use of prior probabilities in maximum likelihood classification of remotely sensed data
    • Strahler AH (1980) The use of prior probabilities in maximum likelihood classification of remotely sensed data. Remote Sensing of Environment 10: 135-163
    • (1980) Remote Sensing of Environment , vol.10 , pp. 135-163
    • Strahler, A.H.1
  • 31
    • 0029244585 scopus 로고
    • Investigating feedforward neural networks with respect to the rejection of spurious patterns
    • Vasconcelos GC, Fairhurst MC, Bisset DL (1995) Investigating feedforward neural networks with respect to the rejection of spurious patterns. Pattern Recognition Letters 16: 213-218
    • (1995) Pattern Recognition Letters , vol.16 , pp. 213-218
    • Vasconcelos, G.C.1    Fairhurst, M.C.2    Bisset, D.L.3
  • 32
    • 0002702567 scopus 로고    scopus 로고
    • Classification algorithms - Where next?
    • Binaghi E, Brivio PA, Rampini A (eds) World Scientific, Singapore
    • Wilkinson GG (1996) Classification algorithms - where next? In: Binaghi E, Brivio PA, Rampini A (eds) Soft computing in remote sensing data analysis. World Scientific, Singapore, pp 93-99
    • (1996) Soft Computing in Remote Sensing Data Analysis , pp. 93-99
    • Wilkinson, G.G.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.