메뉴 건너뛰기




Volumn 12, Issue , 2011, Pages 491-523

Learning multi-modal similarity

Author keywords

Metric learning; Multiple kernel learning; Similarity

Indexed keywords

GRAPH-BASED TECHNIQUES; HETEROGENEOUS DATA; METRIC LEARNING; MULTI-MEDIA; MULTI-MODAL; MULTIPLE KERNEL LEARNING; MULTIPLE MODALITIES; NEAREST-NEIGHBORS; OPTIMAL ENSEMBLE; PERCEPTUAL SIMILARITY; REAL-WORLD APPLICATION; SIMILARITY; SIMILARITY MEASUREMENTS; TRAINING PROCEDURES; VISUAL CONTENT;

EID: 79952712776     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (143)

References (45)
  • 2
    • 0011560546 scopus 로고
    • The transitive reduction of a directed graph
    • doi: 10.1137/0201008. URL
    • Alfred V. Aho, Michael R. Garey, and Jeffrey D. Ullman. The transitive reduction of a directed graph. SIAM Journal on Computing, 1(2):131-137, 1972. doi: 10.1137/0201008. URL http://link.aip.org/link/?SMJ/l/131/1.
    • (1972) SIAM Journal on Computing , vol.1 , Issue.2 , pp. 131-137
    • Aho, A.V.1    Garey, M.R.2    Ullman, J.D.3
  • 3
    • 79952720002 scopus 로고    scopus 로고
    • Anelia Angelova. Data pruning. Master's thesis, California Institute of Technology, 2004
    • Anelia Angelova. Data pruning. Master's thesis, California Institute of Technology, 2004.
  • 5
    • 0000492326 scopus 로고
    • Learning from noisy examples
    • ISSN 0885-6125. doi
    • Dana Angluin and Philip Laird. Learning from noisy examples. Mach. Learn., 2(4):343-370, 1988. ISSN 0885-6125. doi: http://dx.doi.Org/10.1023/A: 1022873112823.
    • (1988) Mach. Learn. , vol.2 , Issue.4 , pp. 343-370
    • Angluin, D.1    Laird, P.2
  • 6
    • 46249088758 scopus 로고    scopus 로고
    • Consistency of the group lasso and multiple kernel learning
    • ISSN 1532-4435
    • Francis R. Bach. Consistency of the group lasso and multiple kernel learning. J. Mach. Learn. Res., 9:1179-1225, 2008. ISSN 1532-4435.
    • (2008) J. Mach. Learn. Res. , vol.9 , pp. 1179-1225
    • Bach, F.R.1
  • 7
    • 33947233031 scopus 로고    scopus 로고
    • Out-of-sample extensions for lle, isomap, mds, eigenmaps, and spectral clustering
    • Sebastian Thrun, Lawrence Saul, and Bernhard Schölkopf, editors, MIT Press, Cambridge, MA
    • Yoshua Bengio, Jean-François Paiement, Pascal Vincent, Olivier Delalleau, Nicolas Le Roux, and Marie Ouimet. Out-of-sample extensions for lle, isomap, mds, eigenmaps, and spectral clustering. In Sebastian Thrun, Lawrence Saul, and Bernhard Schölkopf, editors, Advances in Neural Information Processing Systems 16. MIT Press, Cambridge, MA, 2004.
    • (2004) Advances in Neural. Information Processing Systems , vol.16
    • Bengio, Y.1    Paiement, J.-F.2    Vincent, P.3    Delalleau, O.4    Le Roux, N.5    Ouimet, M.6
  • 8
    • 85009510014 scopus 로고
    • Approximation alogorithms for the maximum acyclic subgraph problem
    • Philadelphia, PA, USA, Society for Industrial and Applied Mathematics. ISBN 0-89871-251-3
    • Bonnie Berger and Peter W. Shor. Approximation alogorithms for the maximum acyclic subgraph problem. In SODA'90: Proceedings of the First Annual ACM-SIAM Symposium on Discrete algorithms, pages 236-243, Philadelphia, PA, USA, 1990. Society for Industrial and Applied Mathematics. ISBN 0-89871-251-3.
    • (1990) SODA'90: Proceedings of the First Annual ACM-SIAM Symposium on Discrete Algorithms , pp. 236-243
    • Berger, B.1    Shor, P.W.2
  • 13
    • 84858743760 scopus 로고    scopus 로고
    • Learning non-linear combinations of kernels
    • Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, and A. Culotta, editors
    • Corinna Cortes, Mehryar Mohri, and Afshin Rostamizadeh. Learning non-linear combinations of kernels. In Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, and A. Culotta, editors, Advances in Neural Information Processing Systems 22, pages 396-404. 2009.
    • (2009) Advances in Neural. Information Processing Systems , vol.22 , pp. 396-404
    • Cortes, C.1    Mohri, M.2    Rostamizadeh, A.3
  • 20
    • 84864030708 scopus 로고    scopus 로고
    • Metric learning by collapsing classes
    • Yair Weiss, Bernhard Schölkopf, and John Platt, editors, Cambridge, MA, MIT Press
    • Amir Globerson and Sam Roweis. Metric learning by collapsing classes. In Yair Weiss, Bernhard Schölkopf, and John Platt, editors, Advances in Neural Information Processing Systems 18, pages 451-458, Cambridge, MA, 2006. MIT Press.
    • (2006) Advances in Neural. Information Processing Systems , vol.18 , pp. 451-458
    • Globerson, A.1    Roweis, S.2
  • 22
    • 84898993653 scopus 로고    scopus 로고
    • Neighborhood components analysis
    • Lawrence K. Saul, Yair Weiss, and Léon Bottou, editors, Cambridge, MA, MIT Press
    • Jacob Goldberger, Sam Roweis, Geoffrey Hinton, and Ruslan Salakhutdinov. Neighborhood components analysis. In Lawrence K. Saul, Yair Weiss, and Léon Bottou, editors, Advances in Neural Information Processing Systems 17, pages 513-520, Cambridge, MA, 2005. MIT Press.
    • (2005) Advances in Neural. Information Processing Systems , vol.17 , pp. 513-520
    • Goldberger, J.1    Roweis, S.2    Hinton, G.3    Salakhutdinov, R.4
  • 23
    • 77956529614 scopus 로고    scopus 로고
    • On the algorithmics and applications of a mixed-norm based kernel learning formulation
    • Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, and A. Culotta, editors
    • Saketha Nath Jagarlapudi, Dinesh G, Raman S, Chiranjib Bhattacharyya, Aharon Ben-Tal, and Ramakrishnan K. R. On the algorithmics and applications of a mixed-norm based kernel learning formulation. In Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, and A. Culotta, editors, Advances in Neural Information Processing Systems 22, pages 844-852. 2009.
    • (2009) Advances in Neural. Information Processing Systems , vol.22 , pp. 844-852
    • Jagarlapudi, S.N.1    Dinesh, G.2    Raman, S.3    Bhattacharyya, C.4    Ben-Tal, A.5    Ramakrishnan, K.R.6
  • 26
    • 84858738634 scopus 로고    scopus 로고
    • Efficient and accurate lp-norm multiple kernel learning
    • Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, and A. Culotta, editors
    • Marius Kloft, Ulf Brefeld, Soeren Sonnenburg, Pavel Laskov, Klaus-Robert Müller, and Alexander Zien. Efficient and accurate lp-norm multiple kernel learning. In Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, and A. Culotta, editors, Advances in Neural Information Processing Systems 22, pages 997-1005. 2009.
    • (2009) Advances in Neural. Information Processing Systems , vol.22 , pp. 997-1005
    • Kloft, M.1    Brefeld, U.2    Sonnenburg, S.3    Laskov, P.4    Müller, K.5    Zien, A.6
  • 27
    • 24944533365 scopus 로고
    • Nonmetric multidimensional scaling: A numerical method
    • June
    • Joseph B. Kruskal. Nonmetric multidimensional scaling: a numerical method. Psychometrika, 29(2), June 1964.
    • (1964) Psychometrika , vol.29 , Issue.2
    • Kruskal, J.B.1
  • 29
    • 84863372721 scopus 로고    scopus 로고
    • Dimensionality reduction for data in multiple feature representations
    • D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, editors
    • Yen-Yu Lin, Tyng-Luh Liu, and Chiou-Shann Fuh. Dimensionality reduction for data in multiple feature representations. In D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, editors, Advances in Neural Information Processing Systems 21, pages 961-968. 2009.
    • (2009) Advances in Neural. Information Processing Systems , vol.21 , pp. 961-968
    • Lin, Y.1    Liu, T.2    Fuh, C.3
  • 32
    • 0342765582 scopus 로고
    • Total ordering problem
    • Jaroslav Opatrny. Total ordering problem. SIAM J. Computing, (8):111-114, 1979.
    • (1979) SIAM J. Computing , Issue.8 , pp. 111-114
    • Opatrny, J.1
  • 33
    • 84898938392 scopus 로고    scopus 로고
    • Going metric: Denoising pairwise data
    • S. Becker, S. Thrun, and K. Obermayer, editors, Cambridge, MA, MIT Press
    • Volker Roth, Julian Laub, Joachim M. Buhmann, and Klaus-Robert Müller. Going metric: denoising pairwise data. In S. Becker, S. Thrun, and K. Obermayer, editors, Advances in Neural Information Processing Systems 15, pages 809-816, Cambridge, MA, 2003. MIT Press.
    • (2003) Advances in Neural. Information Processing Systems , vol.15 , pp. 809-816
    • Roth, V.1    Laub, J.2    Buhmann, J.M.3    Müller, K.-R.4
  • 34
    • 84865131152 scopus 로고    scopus 로고
    • A Generalized Representer Theorem
    • Computational Learning Theory
    • Bernhard Schölkopf, Ralf Herbrich, Alex J. Smola, and Robert Williamson. A generalized representer theorem. In Proceedings of the 14th Annual Conference on Computational Learning Theory, pages 416-426, 2001. (Pubitemid 33312837)
    • (2001) LECTURE NOTES IN COMPUTER SCIENCE , Issue.2111 , pp. 416-426
    • Scholkopf, B.1    Herbrich, R.2    Smola, A.J.3
  • 35
    • 84898997673 scopus 로고    scopus 로고
    • Learning a distance metric from relative comparisons
    • Sebastian Thrun, Lawrence Saul, and Bernhard Schölkopf, editors, Cambridge, MA, MIT Press
    • Matthew Schultz and Thorsten Joachims. Learning a distance metric from relative comparisons. In Sebastian Thrun, Lawrence Saul, and Bernhard Schölkopf, editors, Advances in Neural Information Processing Systems 16, Cambridge, MA, 2004. MIT Press.
    • (2004) Advances in Neural. Information Processing Systems , vol.16
    • Schultz, M.1    Joachims, T.2
  • 38
    • 84950351930 scopus 로고
    • Multidimensional scaling: 1. theory and method
    • Warren S. Torgerson. Multidimensional scaling: 1. theory and method. Psychometrika, 17:401-419, 1952.
    • (1952) Psychometrika , vol.17 , pp. 401-419
    • Torgerson, W.S.1
  • 41
    • 38049184914 scopus 로고    scopus 로고
    • Avoiding boosting overfitting by removing confusing samples
    • Alexander Vezhnevets and Olga Barinova. Avoiding boosting overfitting by removing confusing samples. In ECML 2007, pages 430-441, 2007.
    • (2007) ECML 2007 , pp. 430-441
    • Vezhnevets, A.1    Barinova, O.2
  • 43
    • 33749550361 scopus 로고    scopus 로고
    • Distance metric learning for large margin nearest neighbor classification
    • Yair Weiss, Bernhard Schölkopf, and John Platt, editors, Cambridge, MA, MIT Press
    • Kilian Q. Weinberger, John Blitzer, and Lawrence K. Saul. Distance metric learning for large margin nearest neighbor classification. In Yair Weiss, Bernhard Schölkopf, and John Platt, editors, Advances in Neural Information Processing Systems 18, pages 451-458, Cambridge, MA, 2006. MIT Press.
    • (2006) Advances in Neural. Information Processing Systems , vol.18 , pp. 451-458
    • Weinberger, K.Q.1    Blitzer, J.2    Saul, L.K.3
  • 44
    • 84879571292 scopus 로고    scopus 로고
    • Distance metric learning, with application to clustering with side-information
    • S. Becker, S. Thrun, and K. Obermayer, editors, Cambridge, MA, MIT Press
    • Eric P. Xing, Andrew Y. Ng, Michael I. Jordan, and Stuart Russell. Distance metric learning, with application to clustering with side-information. In S. Becker, S. Thrun, and K. Obermayer, editors, Advances in Neural Information Processing Systems 15, pages 505-512, Cambridge, MA, 2003. MIT Press.
    • (2003) Advances in Neural. Information Processing Systems , vol.15 , pp. 505-512
    • Xing, E.P.1    Ng, A.Y.2    Jordan, M.I.3    Russell, S.4
  • 45
    • 34547992388 scopus 로고    scopus 로고
    • Multiclass multiple kernel learning
    • New York, NY, USA, 2007. ACM. ISBN 978-1-59593-793-3. doi: 1273646
    • Alexander Zien and Cheng Soon Ong. Multiclass multiple kernel learning. In ICML'07: Proceedings of the 24th International Conference on Machine Learning, pages 1191-1198, New York, NY, USA, 2007. ACM. ISBN 978-1-59593-793-3. doi: http://doi.acm.org/10.1145/1273496. 1273646.
    • ICML'07: Proceedings of the 24th International Conference on Machine Learning , pp. 1191-1198
    • Zien, A.1    Ong, C.S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.