메뉴 건너뛰기




Volumn 5, Issue 3, 2010, Pages 115-133

Weighted elastic net model for mass spectrometry imaging processing

Author keywords

biomarker discovery; mass spectrometry imaging; penalized regression; variable selection; weighted elastic net

Indexed keywords

BIO-MARKER DISCOVERY; BIOLOGICAL TISSUES; ELASTIC NET; GLOBAL OPTIMIZATION PROBLEMS; HIGH DIMENSIONALITY; IMAGING MASS SPECTROMETRY; IMAGING PROCESSING; INPUT VARIABLES; MODEL-BASED OPC; PENALIZED REGRESSION; PREDICTION MODEL; PROCESSING NEEDS; PROTEIN ANALYSIS; PROTEIN EXPRESSIONS; PROTEIN LOCALIZATION; PROTEOMICS; RAPID MAPPING; SPATIAL INFORMATIONS; SPATIAL PATTERNS; VARIABLE SELECTION; WEIGHTED ELASTIC-NET;

EID: 79952595273     PISSN: 09735348     EISSN: 17606101     Source Type: Journal    
DOI: 10.1051/mmnp/20105308     Document Type: Review
Times cited : (13)

References (33)
  • 1
    • 84874257732 scopus 로고
    • Better subset regression using the nonnegative garrote
    • L. Breiman. Better subset regression using the nonnegative garrote Technometrics, 37 (1995), 373-384.
    • (1995) Technometrics , vol.37 , pp. 373-384
    • Breiman, L.1
  • 2
    • 1442324454 scopus 로고    scopus 로고
    • Profiling and imaging proteins in tissue sections by MS
    • P. Chaurand, M.E. Sanders, R.A. Jensen, R.M. Caprioli. Profiling and imaging proteins in tissue sections by MS. Anal. Chem., 76 (2004), 86A-93A. (Pubitemid 38280465)
    • (2004) Analytical Chemistry , vol.76 , Issue.5
    • Chaurand, P.1    Schwartz, S.A.2    Caprioli, R.M.3
  • 4
    • 34548275795 scopus 로고    scopus 로고
    • The dantzig selector: Statistical estimation when p is much larger than n
    • E. Candes, T. Tao. The dantzig selector: statistical estimation when p is much larger than n. Annals of Statistics, 35 (2007), 2313(C2351.
    • (2007) Annals of Statistics , vol.35 , Issue.2313
    • Candes, E.1    Tao, T.2
  • 6
    • 1542784498 scopus 로고    scopus 로고
    • Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties
    • J. Fan, R. Li. Variable selection via nonconcave penalized Likelihood and Its Oracle Properties. Journal of the American Statistical Association, 96 (2001), 1348-1360. (Pubitemid 33695585)
    • (2001) Journal of the American Statistical Association , vol.96 , Issue.456 , pp. 1348-1360
    • Fan, J.1    Li, R.2
  • 7
    • 84952149204 scopus 로고
    • A statistical view of some chemometrics regression tools
    • I. Frank, J. Friedman. A statistical view of some chemometrics regression tools. Technometrics, 35 (1993), 109-148.
    • (1993) Technometrics , vol.35 , pp. 109-148
    • Frank, I.1    Friedman, J.2
  • 8
    • 34748863480 scopus 로고    scopus 로고
    • Statistical Classification and visualization of MALDI imaging data
    • 0-7695-2905-4/07
    • M. Gerhard, S.O. Deininger, F.M. Schleif. Statistical Classification and visualization of MALDI imaging data. CBMS'07 2007; 0-7695-2905-4/07.
    • (2007) CBMS'07
    • Gerhard, M.1    Deininger, S.O.2    Schleif, F.M.3
  • 9
    • 33747203238 scopus 로고    scopus 로고
    • Information from complexity: Challenges of TOF-SIMS data interpretation
    • DOI 10.1016/j.apsusc.2006.02.149, PII S0169433206004612
    • D.J. Graham, M.S. Wagner, D.G. Castner. Information from complexity: challenges of TOFSIMS data interpretation. Applied surface science, 252 (2006), 6860-6868. (Pubitemid 44233837)
    • (2006) Applied Surface Science , vol.252 , Issue.19 , pp. 6860-6868
    • Graham, D.J.1    Wagner, M.S.2    Castner, D.G.3
  • 10
    • 20744451888 scopus 로고    scopus 로고
    • Geometric representation of high dimension low sample size data
    • P. Hall, J.S. Marron, A. Neeman. Geometric representation of high dimension low sample size data. J. R. Statist. Soc. B, 67 (2005), 427(C444.
    • (2005) J. R. Statist. Soc. B , vol.67 , Issue.427
    • Hall, P.1    Marron, J.S.2    Neeman, A.3
  • 12
    • 84942484786 scopus 로고
    • Ridge regression: Biased estimation for nonorthogonal problems
    • A. E. Hoerl, R. W. Kennard. Ridge regression: Biased estimation for nonorthogonal problems. Technometrics, 12 (1970), 55-67.
    • (1970) Technometrics , vol.12 , pp. 55-67
    • Hoerl, A.E.1    Kennard, R.W.2
  • 13
    • 49949115667 scopus 로고    scopus 로고
    • Asymptotic properties of bridge estimators in sparse highdimensional regression models
    • J. Huang, J. Horowitz, S. Ma. Asymptotic properties of bridge estimators in sparse highdimensional regression models. Annals Statatistics, 36 (2008), 587-613.
    • (2008) Annals Statatistics , vol.36 , pp. 587-613
    • Huang, J.1    Horowitz, J.2    Ma, S.3
  • 14
    • 51049096710 scopus 로고    scopus 로고
    • Adaptive Lasso for sparse high dimensional regression models
    • J. Huang, S. Ma, C. Zhang. Adaptive Lasso for sparse high dimensional regression models. Stat Sin, 18 (2008), 1603-1618.
    • (2008) Stat Sin. , vol.18 , pp. 1603-1618
    • Huang, J.1    Ma, S.2    Zhang, C.3
  • 15
    • 58149345975 scopus 로고    scopus 로고
    • DASSO: Connections between the Dantzig selector and lasso
    • C142
    • G.M. James, P. Radchenko, and J. Lv. DASSO: connections between the Dantzig selector and lasso. J. R. Statist. Soc. B, 71 (2009) pp. 127(C142.
    • (2009) J. R. Statist. Soc. B , vol.71 , pp. 127
    • James, G.M.1    Radchenko, P.2    Lv, J.3
  • 17
    • 0034287156 scopus 로고    scopus 로고
    • Asymptotics for lasso-type estimators
    • DOI 10.1214/aos/1015957397
    • K. Knight, W. Fu. Asymptotics for Lasso-type estimators. Annals Statistics, 28 (2000), 1356-1378. (Pubitemid 33244917)
    • (2000) Annals of Statistics , vol.28 , Issue.5 , pp. 1356-1378
    • Knight, K.1    Fu, W.2
  • 19
    • 49949090353 scopus 로고    scopus 로고
    • Penalized feature selection and classification in bioinformatics
    • S. Ma, J. Huang. Penalized feature selection and classification in bioinformatics. Brief in Bioinform., 9 (2008), 392-403.
    • (2008) Brief in Bioinform , vol.9 , pp. 392-403
    • Ma, S.1    Huang, J.2
  • 20
    • 64549106080 scopus 로고    scopus 로고
    • Mitochondrial function and energy metabolism in cancer cells: Past overview and future perspectives
    • A. Mayevsky. Mitochondrial function and energy metabolism in cancer cells: Past overview and future perspectives. Mitochondrion, 9 (2009), 165-179.
    • (2009) Mitochondrion , vol.9 , pp. 165-179
    • Mayevsky, A.1
  • 21
    • 26444563501 scopus 로고    scopus 로고
    • Spatial and spectral correlations in MALDI mass spectrometry images by clustering and multivariate analysis
    • DOI 10.1021/ac051081q
    • G. McCombie, D. Staab, M. Stoeckli, R. Knochenmuss. Spatial and Spectral correlation in MALDI mass spectrometry images by clustering and multivariate analysis. Anal. Chem. 2005;77:6118-6124. (Pubitemid 41436943)
    • (2005) Analytical Chemistry , vol.77 , Issue.19 , pp. 6118-6124
    • McCombie, G.1    Staab, D.2    Stoeckli, M.3    Knochenmuss, R.4
  • 22
    • 65349193793 scopus 로고    scopus 로고
    • Lasso-type recovery of sparse representations for high-dimensional data
    • N. Meinshausen, B. Yu. Lasso-type recovery of sparse representations for high-dimensional data. Annals of Statistics, 37 (2009), no. 1, 246-270.
    • (2009) Annals of Statistics , vol.37 , Issue.1 , pp. 246-270
    • Meinshausen, N.1    Yu, B.2
  • 25
    • 85194972808 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • R. Tibshirani. Regression shrinkage and selection via the lasso. J. R. Statist. Soc., Series B., 58(1), 1996, 267-288.
    • (1996) J. R. Statist. Soc., Series B. , vol.58 , Issue.1 , pp. 267-288
    • Tibshirani, R.1
  • 26
    • 33847364905 scopus 로고    scopus 로고
    • On the nonnegative garrote estimator
    • M. Yuan, Y. Lin. On the nonnegative garrote estimator. J. R. Statist. Soc. B., 69 (2007), 143-161.
    • (2007) J. R. Statist. Soc. B. , vol.69 , pp. 143-161
    • Yuan, M.1    Lin, Y.2
  • 27
    • 79960821842 scopus 로고    scopus 로고
    • Elastic net based framework for imaging mass spectrometry data biomarker selection and classification
    • F. Zhang, D. Hong, S. Frappier, D.S. Cornett, R.M. Caprioli. Elastic Net Based Framework for Imaging Mass Spectrometry Data Biomarker Selection and Classification. Manuscript, 2009.
    • (2009) Manuscript
    • Zhang, F.1    Hong, D.2    Frappier, S.3    Cornett, D.S.4    Caprioli, R.M.5
  • 28
    • 30344438839 scopus 로고    scopus 로고
    • Gene selection using support vector machines with non-convex penalty
    • DOI 10.1093/bioinformatics/bti736
    • H. Zhang, J. Ahn, X. Lin, C. Park. Gene selection using support vector machines with nonconvex penalty. Bioinformatics, 22 (2006), 88-95. (Pubitemid 43057012)
    • (2006) Bioinformatics , vol.22 , Issue.1 , pp. 88-95
    • Zhang, H.H.1    Ahn, J.2    Lin, X.3    Park, C.4
  • 29
    • 33845263263 scopus 로고    scopus 로고
    • On model selection consistency of Lasso
    • P. Zhao, B. Yu. On model selection consistency of lasso. The Journal of Machine Learning Research, 7 (2006), 2541-2563. (Pubitemid 44866738)
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 2541-2563
    • Zhao, P.1    Yu, B.2
  • 30
    • 79960784106 scopus 로고    scopus 로고
    • Adaptive lasso for high dimensional regression and Gaussian graphical modeling
    • S. Zhou, S. Geer, P. Buhlmann. Adaptive lasso for high dimensional regression and Gaussian graphical modeling. manuscript, 2009.
    • (2009) Manuscript
    • Zhou, S.1    Geer, S.2    Buhlmann, P.3
  • 33
    • 62549126570 scopus 로고    scopus 로고
    • On the adaptive elastic-net with a diverging number of parameters
    • H. Zou, H. Zhang. On the adaptive elastic-net with a diverging number of parameters. Annals of statistics, 37 (2009), 1733-1751.
    • (2009) Annals of Statistics , vol.37 , pp. 1733-1751
    • Zou, H.1    Zhang, H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.