메뉴 건너뛰기




Volumn , Issue , 2010, Pages 79-84

Combining meta-learning and search techniques to SVM parameter selection

Author keywords

[No Author keywords available]

Indexed keywords

INITIAL SOLUTION; INPUT PROBLEM; LEARNING PROBLEM; METALEARNING; OPTIMUM SOLUTION; PARAMETER SELECTION; PARAMETER SPACES; REGRESSION PROBLEM; REGULARIZATION PARAMETERS; SEARCH SPACES; SEARCH TECHNIQUE;

EID: 79952551532     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/SBRN.2010.22     Document Type: Conference Paper
Times cited : (13)

References (21)
  • 1
    • 1642276856 scopus 로고    scopus 로고
    • A meta-learning approach to select the kernel width in support vector regression
    • C. Soares, P. Brazdil, and P. Kuba, "A meta-learning approach to select the kernel width in support vector regression," Machine Learning, vol. 54, no. 3, pp. 195-209, 2004.
    • (2004) Machine Learning , vol.54 , Issue.3 , pp. 195-209
    • Soares, C.1    Brazdil, P.2    Kuba, P.3
  • 3
    • 0036161011 scopus 로고    scopus 로고
    • Choosing multiple parameters for support vector machines
    • DOI 10.1023/A:1012450327387
    • O. Chapelle, V. Vapnik, O. Bousquet, and S. Mukherjee, "Choosing multiple parameters for support vector machines," Machine Learning, vol. 46, no. 1, pp. 131-159, 2002. (Pubitemid 34129966)
    • (2002) Machine Learning , vol.46 , Issue.1-3 , pp. 131-159
    • Chapelle, O.1    Vapnik, V.2    Bousquet, O.3    Mukherjee, S.4
  • 4
    • 84898998301 scopus 로고    scopus 로고
    • Dynamically adapting kernels in support vector machines
    • N. Cristianini, C. Campbell, and J. Shawe-Taylor, "Dynamically adapting kernels in support vector machines," in NIPS, 1998, pp. 204-210.
    • (1998) NIPS , pp. 204-210
    • Cristianini, N.1    Campbell, C.2    Shawe-Taylor, J.3
  • 5
    • 33750292535 scopus 로고    scopus 로고
    • A meta-learning approach to automatic kernel selection for support vector machines
    • DOI 10.1016/j.neucom.2006.03.004, PII S0925231206001056
    • S. Ali and K. A. Smith-Miles, "A meta-learning approach to automatic kernel selection for support vector machines," Neurocomputing, vol. 70, no. 1-3, pp. 173-186, 2006. (Pubitemid 44615780)
    • (2006) Neurocomputing , vol.70 , Issue.1-3 , pp. 173-186
    • Ali, S.1    Smith-Miles, K.A.2
  • 7
    • 15844394276 scopus 로고    scopus 로고
    • Evolutionary tuning of multiple SVM parameters
    • DOI 10.1016/j.neucom.2004.11.022, PII S0925231204005223
    • F. Friedrichs and C. Igel, "Evolutionary tuning of multiple svm parameters," Neurocomputing, vol. 64, pp. 107-117, 2005. (Pubitemid 40425314)
    • (2005) Neurocomputing , vol.64 , Issue.1-4 SPEC. ISS. , pp. 107-117
    • Friedrichs, F.1    Igel, C.2
  • 8
    • 56549085451 scopus 로고    scopus 로고
    • Evolutionary tuning of svm parameter values in multiclass problems
    • A. Lorena and A. de Carvalho, "Evolutionary tuning of svm parameter values in multiclass problems," Neurocomputing, vol. 71, pp. 16-18, 2008.
    • (2008) Neurocomputing , vol.71 , pp. 16-18
    • Lorena, A.1    De Carvalho, A.2
  • 9
    • 0037822222 scopus 로고    scopus 로고
    • Asymptotic behaviors of support vector machines with gaussian kernel
    • DOI 10.1162/089976603321891855
    • S. S. Keerthi and C.-J. Lin, "Asymptotic behaviors of support vector machines with gaussian kernel," Neural Computation, vol. 15, no. 7, pp. 1667-1689, 2003. (Pubitemid 37035565)
    • (2003) Neural Computation , vol.15 , Issue.7 , pp. 1667-1689
    • Keerthi, S.S.1    Lin, C.-J.2
  • 10
    • 1642405080 scopus 로고    scopus 로고
    • Exploiting sampling and meta-learning for parameter setting support vector machines
    • P. Kuba, P. Brazdil, C. Soares, and A. Woznica, "Exploiting sampling and meta-learning for parameter setting support vector machines," in Proceedings of the IBERAMIA 2002, 2002, pp. 217-225.
    • (2002) Proceedings of the IBERAMIA 2002 , pp. 217-225
    • Kuba, P.1    Brazdil, P.2    Soares, C.3    Woznica, A.4
  • 11
    • 33751067274 scopus 로고    scopus 로고
    • Selecting parameters of SVM using meta-learning and kernel matrix-based meta-features
    • Applied Computing 2006 - The 21st Annual ACM Symposium on Applied Computing - Proceedings of the 2006 ACM Symposium on Applied Computing
    • C. Soares and P. Brazdil, "Selecting parameters of svm using meta-learning and kernel matrix-based meta-features," in SAC, 2006, pp. 564-568. (Pubitemid 44758846)
    • (2006) Proceedings of the ACM Symposium on Applied Computing , vol.1 , pp. 564-568
    • Soares, C.1    Brazdil, P.B.2
  • 14
    • 56549111881 scopus 로고    scopus 로고
    • A novel ls-svms hyper-parameter selection based on particle swarm optimization
    • X. Guo, J. Yang, C. Wu, C. Wang, and Y. Liang, "A novel ls-svms hyper-parameter selection based on particle swarm optimization," Neurocomputing, vol. 71, pp. 3211-3215, 2008.
    • (2008) Neurocomputing , vol.71 , pp. 3211-3215
    • Guo, X.1    Yang, J.2    Wu, C.3    Wang, C.4    Liang, Y.5
  • 16
    • 79952569906 scopus 로고    scopus 로고
    • Matching svm kernel's suitability to data characteristics using tree by fuzzy c-means clustering
    • S. Ali and K. A. Smith, "Matching svm kernel's suitability to data characteristics using tree by fuzzy c-means clustering," in Third International Conference on Hybrid Intelligent Systems, 2003, pp. 553-562.
    • (2003) Third International Conference on Hybrid Intelligent Systems , pp. 553-562
    • Ali, S.1    Smith, K.A.2
  • 17
    • 85013615152 scopus 로고    scopus 로고
    • On optimal degree selection for polynomial kernel with support vector machines: Theoretical and empirical investigations
    • S. Ali and K. Smith-Miles, "On optimal degree selection for polynomial kernel with support vector machines: Theoretical and empirical investigations," KES Journal, vol. 11, no. 1, pp. 1-18, 2007.
    • (2007) KES Journal , vol.11 , Issue.1 , pp. 1-18
    • Ali, S.1    Smith-Miles, K.2
  • 19
    • 4944228528 scopus 로고    scopus 로고
    • A practical guide to support vector classification
    • Department of Computer Science and Information Engineering [Online]. Available
    • C.-W. Hsu, C.-C. Chang, and C.-J. Lin, "A practical guide to support vector classification," Department of Computer Science and Information Engineering, National Taiwan University, Taipei, Technical report, 2003. [Online]. Available: http://www.csie.ntu.edu.tw/cjlin/libsvm/
    • (2003) National Taiwan University, Taipei, Technical Report
    • Hsu, C.-W.1    Chang, C.-C.2    Lin, C.-J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.