-
1
-
-
0037361994
-
Ranking learning algorithms: Using IBL and meta-learning on accuracy and time results
-
P. Brazdil, C. Soares, and J. Costa. Ranking learning algorithms: Using IBL and meta-learning on accuracy and time results. Machine Learning, 50(3):251-277, 2003.
-
(2003)
Machine Learning
, vol.50
, Issue.3
, pp. 251-277
-
-
Brazdil, P.1
Soares, C.2
Costa, J.3
-
2
-
-
27144489164
-
A tutorial on support vector machines for pattern recognition
-
C. Burges. A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery, 2:121-167, 1998.
-
(1998)
Data Mining and Knowledge Discovery
, vol.2
, pp. 121-167
-
-
Burges, C.1
-
3
-
-
0036161011
-
Choosing multiple parameters for support vector machines
-
O. Chapelle, V. Vapnik, O. Bousquet, and S. Mukherjee. Choosing multiple parameters for support vector machines. Machine Learning, 46(1):131-159, 2002.
-
(2002)
Machine Learning
, vol.46
, Issue.1
, pp. 131-159
-
-
Chapelle, O.1
Vapnik, V.2
Bousquet, O.3
Mukherjee, S.4
-
4
-
-
0000913324
-
SVMTorch: Support vector machines for large-scale regression problems
-
R. Collobert and S. Bengio. SVMTorch: Support vector machines for large-scale regression problems. J. of Machine Learning Research, 1:143-160, 2001.
-
(2001)
J. of Machine Learning Research
, vol.1
, pp. 143-160
-
-
Collobert, R.1
Bengio, S.2
-
5
-
-
84898998301
-
Dynamically adapting kernels in support vector machines
-
M. Kearns, S. Solla, and D. Cohn, editors. MIT Press
-
N. Cristianini, J. Shawe-Taylor, and C. Campbell. Dynamically adapting kernels in support vector machines. In M. Kearns, S. Solla, and D. Cohn, editors, Advances in Neural Information Processing Systems, volume 11, pages 204-210. MIT Press, 1998.
-
(1998)
Advances in Neural Information Processing Systems
, vol.11
, pp. 204-210
-
-
Cristianini, N.1
Shawe-Taylor, J.2
Campbell, C.3
-
6
-
-
84898936871
-
On kernel-target alignment
-
T. G. Dietterich, S. Becker, and Z. Ghahramani, editors, Cambridge, MA. MIT Press
-
N. Cristianini, J. Shawe-Taylor, A. Elisseeff, and J. Kandola. On kernel-target alignment. In T. G. Dietterich, S. Becker, and Z. Ghahramani, editors, Advances in Neural Information Processing Systems 14, Cambridge, MA, 2002. MIT Press.
-
(2002)
Advances in Neural Information Processing Systems
, vol.14
-
-
Cristianini, N.1
Shawe-Taylor, J.2
Elisseeff, A.3
Kandola, J.4
-
8
-
-
0033289037
-
Using the fisher kernel method to detect remote protein homologies
-
T. Lengauer, R. Schneider, P. Bork, D. Brutlag, J. Glasgow, M. Mewes, and R. Zimmer, editors. AAAI Press
-
T. Jaakkola, M. Diekhans, and D. Haussler. Using the fisher kernel method to detect remote protein homologies. In T. Lengauer, R. Schneider, P. Bork, D. Brutlag, J. Glasgow, M. Mewes, and R. Zimmer, editors, Proc. of the Seventh Int. Conf. on Intelligent Systems for Molecular Biology, pages 149-158. AAAI Press, 1999.
-
(1999)
Proc. of the Seventh Int. Conf. on Intelligent Systems for Molecular Biology
, pp. 149-158
-
-
Jaakkola, T.1
Diekhans, M.2
Haussler, D.3
-
11
-
-
0035272287
-
An introduction to kernel-based learning algorithms
-
K.-R. Müller, S. Mika, G. Rätsch, K. Tsuda, and B. Schölkopf. An introduction to kernel-based learning algorithms. IEEE Transactions on Neural Networks, 12(2):181-201, 2001.
-
(2001)
IEEE Transactions on Neural Networks
, vol.12
, Issue.2
, pp. 181-201
-
-
Müller, K.-R.1
Mika, S.2
Rätsch, G.3
Tsuda, K.4
Schölkopf, B.5
-
15
-
-
1642276856
-
A meta-learning method to select the kernel width in support vector regression
-
C. Soares, P. Brazdil, and P. Kuba. A meta-learning method to select the kernel width in support vector regression. Machine Learning, 54:195-209, 2004.
-
(2004)
Machine Learning
, vol.54
, pp. 195-209
-
-
Soares, C.1
Brazdil, P.2
Kuba, P.3
|