-
2
-
-
84901569634
-
Laplace kernel with automatic smoothing parameter estimation for support vector machine
-
Submitted in, Springer-Verlag Berlin, Heidelberg
-
S. Ali and K.A. Smith, Laplace kernel with automatic smoothing parameter estimation for support vector machine, Submitted in Journal of Computational Management Science, Springer-Verlag Berlin, Heidelberg, 2004.
-
(2004)
Journal of Computational Management Science
-
-
Ali, S.1
Smith, K.A.2
-
3
-
-
85013583497
-
Automatic kernel selection for support vector machines
-
Accepted for, Elsevier Scienc
-
S. Ali and K.A. Smith, Automatic kernel selection for support vector machines, Accepted for International Journal of Neurocomputing, Elsevier Scienc., 2004.
-
(2004)
International Journal of Neurocomputing
-
-
Ali, S.1
Smith, K.A.2
-
4
-
-
0032786569
-
Improving Support Vector Machine Classifiers by Modifying Kernel Functions
-
S.-I. Amari and S. Wu, Improving Support Vector Machine Classifiers by Modifying Kernel Functions, Neural Networks 12 (1999), 783-789.
-
(1999)
Neural Networks
, vol.12
, pp. 783-789
-
-
Amari, S.-I.1
Wu, S.2
-
5
-
-
0033333598
-
On support vector decision trees for database marketing
-
K.P. Bennett, S. Wu and L. Auslender, On support vector decision trees for database marketing, IEEE International Joint Conference on Neural Networks (IJCNN '99), 1999, 2, 904-909.
-
(1999)
IEEE International Joint Conference on Neural Networks (IJCNN '99
, vol.2
, pp. 904-909
-
-
Bennett, K.P.1
Wu, S.2
Auslender, L.3
-
7
-
-
0026966646
-
-
proceedings of the Fifth Annual Workshop of Computational Learning Theory, Pittsburg, ACM 5
-
B.E. Boser, I. Guyon and V.N. Vapnik, A Training algorithm for optimal margin classifiers, in proceedings of the Fifth Annual Workshop of Computational Learning Theory, Pittsburg, ACM 5, 1992, 144-152.
-
(1992)
A Training algorithm for optimal margin classifiers
, pp. 144-152
-
-
Boser, B.E.1
Guyon, I.2
Vapnik, V.N.3
-
8
-
-
34249753618
-
Support vector networks
-
C. Cortes and V. Vapnik, Support vector networks, Machine Learning 20 (1995), 273-297.
-
(1995)
Machine Learning
, vol.20
, pp. 273-297
-
-
Cortes, C.1
Vapnik, V.2
-
9
-
-
0000494466
-
Optimal brain damage
-
D.S. Touretzky, eds, San Mateo, Morgan Kaufmann, San Mateo, CA
-
Y.L. Cun, J.S. Denker and S.A. Solla, Optimal brain damage, in: Advances in Neural Information Processing Systems, D.S. Touretzky, eds, San Mateo, Morgan Kaufmann, San Mateo, CA, 1990, 2, 598-605.
-
(1990)
Advances in Neural Information Processing Systems
, vol.2
, pp. 598-605
-
-
Cun, Y.L.1
Denker, J.S.2
Solla, S.A.3
-
10
-
-
0030145401
-
A note on comparing classifier
-
R.P.W. Duin, A note on comparing classifier, Pattern Recognition Letters 1 (1996), 529-536.
-
(1996)
Pattern Recognition Letters
, vol.1
, pp. 529-536
-
-
Duin, R.P.W.1
-
11
-
-
0034419669
-
Regularization Networks and Support Vector Machines
-
T. Evgeniou, M. Pontil and T. Poggio, Regularization Networks and Support Vector Machines, Advances in Computational Mathematics 13(1) (2000), 1-50.
-
(2000)
Advances in Computational Mathematics
, vol.13
, Issue.1
, pp. 1-50
-
-
Evgeniou, T.1
Pontil, M.2
Poggio, T.3
-
12
-
-
0001942829
-
Neural networks and the bias/variance dilemma
-
S. Geman, E. Bienenstock and R. Doursat, Neural networks and the bias/variance dilemma, Neural Computation 4(1) (1992), 1-58.
-
(1992)
Neural Computation
, vol.4
, Issue.1
, pp. 1-58
-
-
Geman, S.1
Bienenstock, E.2
Doursat, R.3
-
14
-
-
0036161259
-
Gene selection for cancer classification using support vector machines
-
I. Guyon, J. Weston, S. Barnhill and V. Vapnik, Gene selection for cancer classification using support vector machines, Machine Learning 46(1/3) (2002), 389-422.
-
(2002)
Machine Learning
, vol.46
, Issue.1-3
, pp. 389-422
-
-
Guyon, I.1
Weston, J.2
Barnhill, S.3
Vapnik, V.4
-
15
-
-
10044232174
-
Pattern classification using support vector machine ensemble
-
K. Hyun-Chul, P. Shaoning, J. Hong-Mo, K. Daijin and B. Sung-Yang, Pattern classification using support vector machine ensemble, Proceedings of IEEE 16th International Conference on Pattern Recognition, 2002, 2, 160-163.
-
(2002)
Proceedings of IEEE 16th International Conference on Pattern Recognition
, vol.2
, pp. 160-163
-
-
Hyun-Chul, K.1
Shaoning, P.2
Hong-Mo, J.3
Daijin, K.4
Sung-Yang, B.5
-
16
-
-
84957069814
-
Text categorization with support vector machines: Learning with many relevant features
-
C. N’edellec and C. Rouveirol, eds
-
T. Joachims, Text categorization with support vector machines: learning with many relevant features, in: Proceedings of ECML-98, 10th European Conference on Machine Learning, C. N’edellec and C. Rouveirol, eds, 1998, pp. 137-142.
-
(1998)
Proceedings of ECML-98, 10th European Conference on Machine Learning
, pp. 137-142
-
-
Joachims, T.1
-
18
-
-
0000029122
-
A simple weight decay can improve generalization
-
J.E. Moody et al., eds, Morgan Kaufmann, San Mateo, CA
-
A. Krogh and J.A. Hertz, A simple weight decay can improve generalization, in: Advances in Neural Information Processing Systems, J.E. Moody et al., eds, Morgan Kaufmann, San Mateo, CA, 1992, 4, 950-957.
-
(1992)
Advances in Neural Information Processing Systems
, vol.4
, pp. 950-957
-
-
Krogh, A.1
Hertz, J.A.2
-
19
-
-
0033699722
-
Overfitting and neural networks: Conjugate gradient and backpropagation
-
proceedings of the
-
S. Lawrence and C.L. Giles, Overfitting and neural networks: conjugate gradient and backpropagation, in proceedings of the IEEE international joint conference on Neural Networks, 2000, 114-119.
-
(2000)
IEEE international joint conference on Neural Networks
, pp. 114-119
-
-
Lawrence, S.1
Giles, C.L.2
-
21
-
-
0141765796
-
Accurate online support vector regression
-
J. Ma, J. Theiler and S. Perkins, Accurate online support vector regression, Neural Computation 15 (2003), 2683-2703.
-
(2003)
Neural Computation
, vol.15
, pp. 2683-2703
-
-
Ma, J.1
Theiler, J.2
Perkins, S.3
-
24
-
-
0003260442
-
Combining statistical learning with a knowledge-based approach-a case study in intensive care monitoring
-
K. Morik, P. Brockhausen and T. Joachims, Combining statistical learning with a knowledge-based approach-a case study in intensive care monitoring, in Proc. 16th International conf. on Machine Learning, 1999, 268-277.
-
(1999)
Proc. 16th International conf. on Machine Learning
, pp. 268-277
-
-
Morik, K.1
Brockhausen, P.2
Joachims, T.3
-
25
-
-
0036085407
-
Experimental Analysis of Support Vector Machines with Different Kernels Based on Non-Intrusive Monitoring Data
-
T. Onoda, H. Murata, G. Ratsch and K.-R. Muller, Experimental Analysis of Support Vector Machines with Different Kernels Based on Non-Intrusive Monitoring Data, IEEE Proceedings of the 2002 International Joint Conference on Neural Networks, 2002, 3, 2186-2191.
-
(2002)
IEEE Proceedings of the 2002 International Joint Conference on Neural Networks
, vol.3
, pp. 2186-2191
-
-
Onoda, T.1
Murata, H.2
Ratsch, G.3
Muller, K.-R.4
-
26
-
-
0242576444
-
Expediting model selection for support vector machines based on data reduction
-
Y.-Y. Ou, C.-Y. Chen, S.-C. Hwang and Y.-J. Oyang, Expediting model selection for support vector machines based on data reduction, IEEE International Conference on Systems, Man and Cybernetics, 2003, 1, 786-791.
-
(2003)
IEEE International Conference on Systems, Man and Cybernetics
, vol.1
, pp. 786-791
-
-
Ou, Y.-Y.1
Chen, C.-Y.2
Hwang, S.-C.3
Oyang, Y.-J.4
-
27
-
-
85013572838
-
-
Proceedings of European Conference on Machine Learning (ECML), Helsinki
-
G. Paab, E. Leopold, M. Larson, J. Kindermann and S. Eickeler, SVM classification using sequences of phonemes and syllables, Proceedings of European Conference on Machine Learning (ECML), Helsinki, 2002.
-
(2002)
SVM classification using sequences of phonemes and syllables
-
-
Paab, G.1
Leopold, E.2
Larson, M.3
Kindermann, J.4
Eickeler, S.5
-
28
-
-
0037411308
-
Growing support vector classifiers with controlled complexity
-
E. Parrado-Hernandez, I. Mora-Jimenez, J. Arenas-Garca, A.R. Figueiras-Vidal and A. Navia-Vazquez, Growing support vector classifiers with controlled complexity, Pattern Recognition 36 (2003), 1479-1488.
-
(2003)
Pattern Recognition
, vol.36
, pp. 1479-1488
-
-
Parrado-Hernandez, E.1
Mora-Jimenez, I.2
Arenas-Garca, J.3
Figueiras-Vidal, A.R.4
Navia-Vazquez, A.5
-
30
-
-
84958787288
-
A Comparative study of polynomial kernel SVM applied to appearance-based object recognition
-
Lecture Notes in Computer Science, Springer-Verlag, London
-
E.M.D. Santos and H.M. Gomes, A Comparative study of polynomial kernel SVM applied to appearance-based object recognition, Proceedings of the First International Workshop on Pattern Recognition with Support Vector Machines, Lecture Notes in Computer Science, Springer-Verlag, London, 2002, 408-418.
-
(2002)
Proceedings of the First International Workshop on Pattern Recognition with Support Vector Machines
, pp. 408-418
-
-
Santos, E.M.D.1
Gomes, H.M.2
-
31
-
-
30344451274
-
Modelling the relationship between problem characteristics and data mining algorithm performance using neural networks
-
C. Dagli et al., eds, ASME Press
-
K.A. Smith, F. Woo, V. Ciesielski and R. Ibrahim, Modelling the relationship between problem characteristics and data mining algorithm performance using neural networks, in: Smart Engineering System Design: Neural Networks, Fuzzy Logic, Evolutionary Programming, Data Mining, and Complex Systems, C. Dagli et al., eds, ASME Press, 2001, 11, pp. 357-362.
-
(2001)
Smart Engineering System Design: Neural Networks, Fuzzy Logic, Evolutionary Programming, Data Mining, and Complex Systems
, vol.11
, pp. 357-362
-
-
Smith, K.A.1
Woo, F.2
Ciesielski, V.3
Ibrahim, R.4
-
32
-
-
30344479028
-
Matching data mining algorithm suitability to data characteristics using a self-organising map
-
A. Abraham and M. Koppen, eds, Physica-Verlag, Heidelberg
-
K.A. Smith, F.Woo, V. Ciesielski and R. Ibrahim, Matching data mining algorithm suitability to data characteristics using a self-organising map, in: Hybrid Information Systems, A. Abraham and M. Koppen, eds, Physica-Verlag, Heidelberg, 2002, pp. 169-180.
-
(2002)
Hybrid Information Systems
, pp. 169-180
-
-
Smith, K.A.1
Woo, F.2
Ciesielski, V.3
Ibrahim, R.4
-
34
-
-
0033556788
-
Mixtures of probabilistic principal component analysers
-
M.E. Tipping and C.M. Bishop, Mixtures of probabilistic principal component analysers, Neural Computation 11(2) (1999), 443-482.
-
(1999)
Neural Computation
, vol.11
, Issue.2
, pp. 443-482
-
-
Tipping, M.E.1
Bishop, C.M.2
-
37
-
-
0036298128
-
Evaluation of kernel methods for speaker verification and identification
-
V. Wan and S. Renals, Evaluation of kernel methods for speaker verification and identification, Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing, (ICASSP '02), 2002, 1, 669-672.
-
(2002)
Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing, (ICASSP '02)
, vol.1
, pp. 669-672
-
-
Wan, V.1
Renals, S.2
-
38
-
-
0000539096
-
Generalization by weight-elimination with application to forecasting
-
R.P. Lippmann et al., eds, Morgan Kaufmann, San Mateo, CA
-
A.S. Weigend, D.E. Rumelhart and B.A. Huberman, Generalization by weight-elimination with application to forecasting, in: Advances in Neural Information Processing Systems, R.P. Lippmann et al., eds, Morgan Kaufmann, San Mateo, CA, 1991, 3, 875-882.
-
(1991)
Advances in Neural Information Processing Systems
, vol.3
, pp. 875-882
-
-
Weigend, A.S.1
Rumelhart, D.E.2
Huberman, B.A.3
-
39
-
-
0001254045
-
Multi-class support vector machines
-
M. Verleysen, eds, Bruges, Belgium
-
J.Weston and C.Watkins, Multi-class support vector machines, in: Proceedings of 7th European Symposium on Artificial Neural Networks (ESANN99), M. Verleysen, eds, Bruges, Belgium, 1999.
-
(1999)
Proceedings of 7th European Symposium on Artificial Neural Networks (ESANN99)
-
-
Weston, J.1
Watkins, C.2
|