메뉴 건너뛰기




Volumn 65, Issue 12, 2010, Pages 1223-1228

Evaluation of machine learning classifiers in keratoconus detection from orbscan ii examinations

Author keywords

Artificial intelligence; Clinical decision support systems; Corneal topography; Diagnosis; Neural networks

Indexed keywords

ADULT; ARTICLE; ARTIFICIAL INTELLIGENCE; ARTIFICIAL NEURAL NETWORK; CLASSIFICATION; COMPUTER ASSISTED DIAGNOSIS; EVALUATION; FEMALE; HUMAN; INSTRUMENTATION; KERATOCONUS; KERATOMETRY; MALE; METHODOLOGY; RECEIVER OPERATING CHARACTERISTIC; SENSITIVITY AND SPECIFICITY;

EID: 79951821735     PISSN: 18075932     EISSN: None     Source Type: Journal    
DOI: 10.1590/S1807-59322010001200002     Document Type: Article
Times cited : (77)

References (49)
  • 1
    • 0021343891 scopus 로고
    • Keratoconus and related noninflammatory corneal thinning disorders
    • doi: 10.1016/0039-6257(84)90094-8
    • Krachmer JH, Feder RS, Belin MW. Keratoconus and related noninflammatory corneal thinning disorders. Surv Ophthalmol. 1984;28:293-322, doi: 10.1016/0039-6257(84)90094-8.
    • (1984) Surv Ophthalmol , vol.28 , pp. 293-322
    • Krachmer, J.H.1    Feder, R.S.2    Belin, M.W.3
  • 2
    • 0031914254 scopus 로고    scopus 로고
    • Keratoconus
    • doi: 10. 1016/S0039-6257(97)00119-7
    • Rabinowitz YS. Keratoconus. Surv Ophthalmol. 1998;42:297-319, doi: 10. 1016/S0039-6257(97)00119-7.
    • (1998) Surv Ophthalmol , vol.42 , pp. 297-319
    • Rabinowitz, Y.S.1
  • 4
    • 33847041801 scopus 로고    scopus 로고
    • Keratoconus: It is hard to define, but
    • doi: 10.1016/j.ajo.2006.12.030
    • Belin MW, Khachikian SS. Keratoconus: it is hard to define, but. Am J Ophthalmol. 2007;143:500-3, doi: 10.1016/j.ajo.2006.12.030.
    • (2007) Am J Ophthalmol , vol.143 , pp. 500-503
    • Belin, M.W.1    Khachikian, S.S.2
  • 5
    • 0036628192 scopus 로고    scopus 로고
    • Neural network-based system for early keratoconus detection from corneal topography
    • doi: 10.1016/S1532-0464(02)00513-0
    • Accardo PA, Pensiero S. Neural network-based system for early keratoconus detection from corneal topography. J Biomed Inform. 2002;35:151-9, doi: 10.1016/S1532-0464(02)00513-0.
    • (2002) J Biomed Inform , vol.35 , pp. 151-159
    • Accardo, P.A.1    Pensiero, S.2
  • 6
    • 33746038909 scopus 로고    scopus 로고
    • Corneal elevation indices in normal and keratoconic eyes
    • doi: 10.1016/j.jcrs.2006.02.060
    • Fam HB, Lim KL. Corneal elevation indices in normal and keratoconic eyes. J Cataract Refract Surg. 2006;32:1281-7, doi: 10.1016/j.jcrs.2006.02.060.
    • (2006) J Cataract Refract Surg , vol.32 , pp. 1281-1287
    • Fam, H.B.1    Lim, K.L.2
  • 7
    • 33947238244 scopus 로고    scopus 로고
    • Initial Biopsy Outcome Prediction - Head-to-head Comparison of a Logistic Regression-based Nomogram Versus Artificial Neural Network
    • Re: Felix K.-H. Chun, Markus Graefen, Alberto Briganti, Andrea Gallina, Julia Hopp, Michael W. Kattan, Hartwig Huland and Pierre I. Karakiewicz, Eur Urol. 2007;51:1446-7; author reply 8., doi: 10.1016/j.eururo.2006.11.035
    • Stephan C, Meyer HA, Cammann H, Lein M, Loening SA, Jung K. Re: Felix K.-H. Chun, Markus Graefen, Alberto Briganti, Andrea Gallina, Julia Hopp, Michael W. Kattan, Hartwig Huland and Pierre I. Karakiewicz. Initial biopsy outcome prediction - head-to-head comparison of a logistic regression-based nomogram versus artificial neural network. Eur Urol. 2007;51:1236-43. Eur Urol. 2007;51:1446-7; author reply 8., doi: 10.1016/j.eururo.2006.11.035
    • (2007) Eur Urol. , vol.51 , pp. 1236-43
    • Stephan, C.1    Meyer, H.A.2    Cammann, H.3    Lein, M.4    Loening, S.A.5    Jung, K.6
  • 8
    • 0030757559 scopus 로고    scopus 로고
    • Current keratoconus detection methods compared with a neural network approach
    • Smolek MK, Klyce SD. Current keratoconus detection methods compared with a neural network approach. Invest Ophthalmol Vis Sci. 1997;38:2290-9.
    • (1997) Invest Ophthalmol Vis Sci , vol.38 , pp. 2290-2299
    • Smolek, M.K.1    Klyce, S.D.2
  • 11
    • 13944275573 scopus 로고    scopus 로고
    • Orbscan computerized topography: Attributes, applications, and limitations
    • doi: 10.1016/j.jcrs.2004.09.047
    • Cairns G, McGhee CN. Orbscan computerized topography: attributes, applications, and limitations. J Cataract Refract Surg. 2005;31:205-20, doi: 10.1016/j.jcrs.2004.09.047.
    • (2005) J Cataract Refract Surg , vol.31 , pp. 205-20
    • Cairns, G.1    McGhee, C.N.2
  • 12
    • 0030817812 scopus 로고    scopus 로고
    • Standardizing constants for ultrasonic biometry, keratometry, and intraocular lens power calculations
    • Holladay JT. Standardizing constants for ultrasonic biometry, keratometry, and intraocular lens power calculations. J Cataract Refract Surg. 1997;23:1356-70.
    • (1997) J Cataract Refract Surg , vol.23 , pp. 1356-70
    • Holladay, J.T.1
  • 13
    • 0028885963 scopus 로고
    • Comparison of methods for detecting keratoconus using videokeratography
    • Maeda N, Klyce SD, Smolek MK. Comparison of methods for detecting keratoconus using videokeratography. Arch Ophthalmol. 1995;113:870- 4.
    • (1995) Arch Ophthalmol , vol.113 , pp. 870-874
    • Maeda, N.1    Klyce, S.D.2    Smolek, M.K.3
  • 14
    • 0024958014 scopus 로고
    • Computer-assisted corneal topography in keratoconus
    • Rabinowitz YS, McDonnell PJ. Computer-assisted corneal topography in keratoconus. Refract Corneal Surg. 1989;5:400-8.
    • (1989) Refract Corneal Surg , vol.5 , pp. 400-408
    • Rabinowitz, Y.S.1    McDonnell, P.J.2
  • 15
    • 76749092270 scopus 로고    scopus 로고
    • Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH. The WEKA Data Mining Software: An Update. SIGKDD Explorations 2009;11, doi: 10.1145/1656274.1656278.
  • 18
    • 0020083498 scopus 로고
    • The meaning and use of the area under a receiver operating characteristic (ROC) curve
    • Hanley JA, McNeil BJ. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology. 1982;143:29-36.
    • (1982) Radiology , vol.143 , pp. 29-36
    • Hanley, J.A.1    McNeil, B.J.2
  • 19
    • 33644781958 scopus 로고    scopus 로고
    • A tutorial on the use of ROC analysis for computer-aided diagnostic systems
    • Scheipers U, Perrey C, Siebers S, Hansen C, Ermert H. A tutorial on the use of ROC analysis for computer-aided diagnostic systems. Ultrason Imaging. 2005;27:181-98.
    • (2005) Ultrason Imaging , vol.27 , pp. 181-98
    • Scheipers, U.1    Perrey, C.2    Siebers, S.3    Hansen, C.4    Ermert, H.5
  • 20
    • 77958183256 scopus 로고    scopus 로고
    • Evaluating classifiers using ROC curves
    • doi: 10.1109/TLA.2008.4609920
    • Prati RC, Batista GEAPA, Monard MC. Evaluating classifiers using ROC curves. IEEE Ame ́rica Latina. 2008;6:215-22, doi: 10.1109/TLA.2008.4609920.
    • (2008) IEEE Ame ́rica Latina , vol.6 , pp. 215-22
    • Prati, R.C.1    Batista, G.E.A.P.A.2    Monard, M.C.3
  • 21
    • 0028339835 scopus 로고
    • Diagnostic tests 3: Receiver operating characteristic plots
    • Altman DG, Bland JM. Diagnostic tests 3: receiver operating characteristic plots. BMJ. 1994;309:188.
    • (1994) BMJ , vol.309 , pp. 188
    • Altman, D.G.1    Bland, J.M.2
  • 22
    • 0001177599 scopus 로고    scopus 로고
    • Median radial basis function neural network
    • doi: 10.1109/72.548164
    • Bors AG, Pitas I. Median radial basis function neural network. IEEE Trans Neural Netw. 1996;7:1351-64, doi: 10.1109/72.548164.
    • (1996) IEEE Trans Neural Netw , vol.7 , pp. 1351-64
    • Bors, A.G.1    Pitas, I.2
  • 24
    • 0003120218 scopus 로고    scopus 로고
    • Fast training of support vector machines using sequential minimal optimization
    • In: Scholkopf C, Burges C, Smola A, eds., Cambridge, MA: MIT Press
    • Platt J. Fast training of support vector machines using sequential minimal optimization. In: Scholkopf C, Burges C, Smola A, eds. Advances in Kernel Methods: Support Vector Learning. Cambridge, MA: MIT Press; 1998.
    • (1998) Advances In Kernel Methods: Support Vector Learning
    • Platt, J.1
  • 27
    • 0027205884 scopus 로고
    • A scaled conjugate gradient algorithm for fast supervised learning
    • doi: 10.1016/S0893-6080(05) 80056-5
    • Moller M. A scaled conjugate gradient algorithm for fast supervised learning. Neural Networks. 1993;6:525-33, doi: 10.1016/S0893-6080(05) 80056-5.
    • (1993) Neural Networks , vol.6 , pp. 525-33
    • Moller, M.1
  • 29
    • 0020524559 scopus 로고
    • A method of comparing the areas under receiver operating characteristic curves derived from the same cases
    • Hanley JA, McNeil BJ. A method of comparing the areas under receiver operating characteristic curves derived from the same cases. Radiology. 1983;148:839-43.
    • (1983) Radiology , vol.148 , pp. 839-43
    • Hanley, J.A.1    McNeil, B.J.2
  • 31
    • 0032869107 scopus 로고    scopus 로고
    • KISA% index: A quantitative videokeratography algorithm embodying minimal topographic criteria for diagnosing keratoconus
    • doi: 10.1016/S0886-3350(99)00195-9
    • Rabinowitz YS, Rasheed K. KISA% index: a quantitative videokeratography algorithm embodying minimal topographic criteria for diagnosing keratoconus. J Cataract Refract Surg. 1999;25:1327-35, doi: 10.1016/S0886-3350(99)00195-9.
    • (1999) J Cataract Refract Surg , vol.25 , pp. 1327-35
    • Rabinowitz, Y.S.1    Rasheed, K.2
  • 32
    • 0028874832 scopus 로고
    • Videokeratographic indices to aid in screening for keratoconus
    • Rabinowitz YS. Videokeratographic indices to aid in screening for keratoconus. J Refract Surg. 1995;11:371-9.
    • (1995) J Refract Surg , vol.11 , pp. 371-379
    • Rabinowitz, Y.S.1
  • 33
    • 0036896206 scopus 로고    scopus 로고
    • Corneal thickness indices discriminate between keratoconus and contact lens-induced corneal thinning
    • doi: 10.1016/S0161-6420(02)01276-9
    • Pflugfelder SC, Liu Z, Feuer W, Verm A. Corneal thickness indices discriminate between keratoconus and contact lens-induced corneal thinning. Ophthalmology. 2002;109:2336-41, doi: 10.1016/S0161-6420(02)01276-9.
    • (2002) Ophthalmology , vol.109 , pp. 2336-41
    • Pflugfelder, S.C.1    Liu, Z.2    Feuer, W.3    Verm, A.4
  • 34
    • 0036293836 scopus 로고    scopus 로고
    • Standardized color-coded scales for anterior and posterior elevation maps of scanning slit corneal topography
    • doi: 10.1016/S0161-420(02)01030-8
    • Tanabe T, Oshika T, Tomidokoro A, Amano S, Tanaka S, Kuroda T, et al. Standardized color-coded scales for anterior and posterior elevation maps of scanning slit corneal topography. Ophthalmology. 2002;109: 1298-302, doi: 10.1016/S0161-420(02)01030-8.
    • (2002) Ophthalmology , vol.109 , pp. 1298-302
    • Tanabe, T.1    Oshika, T.2    Tomidokoro, A.3    Amano, S.4    Tanaka, S.5    Kuroda, T.6
  • 35
    • 0029022661 scopus 로고
    • Neural network classification of corneal topography. Preliminary demonstration
    • Maeda N, Klyce SD, Smolek MK. Neural network classification of corneal topography. Preliminary demonstration. Invest Ophthalmol Vis Sci. 1995;36:1327-35.
    • (1995) Invest Ophthalmol Vis Sci. , vol.36 , pp. 1327-35
    • Maeda, N.1    Klyce, S.D.2    Smolek, M.K.3
  • 36
    • 13844255761 scopus 로고    scopus 로고
    • Preliminary results of neural networks and zernike polynomials for classification of videokeratography maps
    • doi: 10.1097/01.OPX.0000153193.41554.A1
    • Carvalho LA. Preliminary results of neural networks and zernike polynomials for classification of videokeratography maps. Optom Vis Sci. 2005;82:151-8, doi: 10.1097/01.OPX.0000153193.41554.A1.
    • (2005) Optom Vis Sci , vol.82 , pp. 151-158
    • Carvalho, L.A.1
  • 37
    • 33847076795 scopus 로고    scopus 로고
    • Evaluation of keratoconus in Asians: Role of Orbscan II and Tomey TMS-2 corneal topography
    • doi: 10.1016/j.ajo.2006.11.030
    • Lim L, Wei RH, Chan WK, Tan DT. Evaluation of keratoconus in Asians: role of Orbscan II and Tomey TMS-2 corneal topography. Am J Ophthalmol. 2007;143:390-400, doi: 10.1016/j.ajo.2006.11.030.
    • (2007) Am J Ophthalmol , vol.143 , pp. 390-400
    • Lim, L.1    Wei, R.H.2    Chan, W.K.3    Tan, D.T.4
  • 38
    • 0036714028 scopus 로고    scopus 로고
    • Role of Orbscan II in screening keratoconus suspects before refractive corneal surgery
    • doi: 10.1016/S0161-6420(02)01121-1
    • Rao SN, Raviv T, Majmudar PA, Epstein RJ. Role of Orbscan II in screening keratoconus suspects before refractive corneal surgery. Ophthalmology. 2002;109:1642-6, doi: 10.1016/S0161-6420(02)01121-1.
    • (2002) Ophthalmology , vol.109 , pp. 1642-1646
    • Rao, S.N.1    Raviv, T.2    Majmudar, P.A.3    Epstein, R.J.4
  • 39
    • 33847043090 scopus 로고    scopus 로고
    • Identification of scanning slit-beam topographic parameters important in distinguishing normal from keratoconic corneal morphologic features
    • doi: 10.1016/j.ajo.2006.11.044
    • Sonmez B, Doan MP, Hamilton DR. Identification of scanning slit-beam topographic parameters important in distinguishing normal from keratoconic corneal morphologic features. Am J Ophthalmol. 2007;143:401-8, doi: 10.1016/j.ajo.2006.11.044.
    • (2007) Am J Ophthalmol , vol.143 , pp. 401-408
    • Sonmez, B.1    Doan, M.P.2    Hamilton, D.R.3
  • 40
    • 18244383805 scopus 로고    scopus 로고
    • Relevance vector machine and support vector machine classifier analysis of scanning laser polarimetry retinal nerve fiber layer measurements
    • doi: 10.1167/iovs.04-1122
    • Bowd C, Medeiros FA, Zhang Z, Zangwill LM, Hao J, Lee TW, et al. Relevance vector machine and support vector machine classifier analysis of scanning laser polarimetry retinal nerve fiber layer measurements. Invest Ophthalmol Vis Sci. 2005;46:1322-9, doi: 10.1167/iovs.04-1122.
    • (2005) Invest Ophthalmol Vis Sci , vol.46 , pp. 1322-1329
    • Bowd, C.1    Medeiros, F.A.2    Zhang, Z.3    Zangwill, L.M.4    Hao, J.5    Lee, T.W.6
  • 41
    • 48549083993 scopus 로고    scopus 로고
    • Machine learning classifiers in glaucoma
    • doi: 10.1097/OPX.0b013e3181783ab6
    • Bowd C, Goldbaum MH. Machine learning classifiers in glaucoma. Optom Vis Sci. 2008;85:396-405, doi: 10.1097/OPX.0b013e3181783ab6.
    • (2008) Optom Vis Sci , vol.85 , pp. 396-405
    • Bowd, C.1    Goldbaum, M.H.2
  • 45
    • 0043126911 scopus 로고    scopus 로고
    • Logistic regression and artificial neural network classification models: A methodology review
    • doi: 10.1016/S1532-0464(03)00034-0
    • Dreiseitl S, Ohno-Machado L. Logistic regression and artificial neural network classification models: a methodology review. J Biomed Inform. 2002;35:352-9, doi: 10.1016/S1532-0464(03)00034-0.
    • (2002) J Biomed Inform , vol.35 , pp. 352-359
    • Dreiseitl, S.1    Ohno-Machado, L.2
  • 47
    • 0019866183 scopus 로고
    • An analysis of physician attitudes regarding computer-based clinical consultation systems
    • doi: 10.1016/0010-4809(81)90012-4
    • Teach RL, Shortliffe EH. An analysis of physician attitudes regarding computer-based clinical consultation systems. Comput Biomed Res. 1981;14:542-58, doi: 10.1016/0010-4809(81)90012-4.
    • (1981) Comput Biomed Res , vol.14 , pp. 542-58
    • Teach, R.L.1    Shortliffe, E.H.2
  • 48
    • 0028472171 scopus 로고
    • Artificial intelligence in radiology: Decision support systems
    • Kahn CE, Jr. Artificial intelligence in radiology: decision support systems. Radiographics. 1994;14:849-61.
    • (1994) Radiographics , vol.14 , pp. 849-61
    • Kahn Jr., C.E.1
  • 49
    • 0035871371 scopus 로고    scopus 로고
    • Artificial neural networks: Opening the black box
    • doi: 10.1002/1097-0142(20010415)91:8+,1615::AIDCNCR1175.3.0. CO;2-L
    • Dayhoff JE, DeLeo JM. Artificial neural networks: opening the black box. Cancer. 2001;91:1615-35, doi: 10.1002/1097-0142(20010415)91:8+,1615::AIDCNCR1175.3.0. CO;2-L.
    • (2001) Cancer , vol.91 , pp. 1615-35
    • Dayhoff, J.E.1    Deleo, J.M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.