메뉴 건너뛰기




Volumn 2, Issue , 2005, Pages 972-977

Effective neural network pruning using cross-validation

Author keywords

[No Author keywords available]

Indexed keywords

DECISION THEORY; FUNCTIONS; PROBLEM SOLVING; TOPOLOGY; TREES (MATHEMATICS);

EID: 33745937122     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/IJCNN.2005.1555984     Document Type: Conference Paper
Times cited : (33)

References (14)
  • 2
    • 36149031331 scopus 로고
    • Learning in feedforward layered networks: The tiling algorithm
    • M. Mezard and J. Nadal, "Learning in feedforward layered networks: The tiling algorithm," Journal of Physics A, vol. 12, no. 12, pp. 2191-2203, 1989.
    • (1989) Journal of Physics A , vol.12 , Issue.12 , pp. 2191-2203
    • Mezard, M.1    Nadal, J.2
  • 3
    • 0033742041 scopus 로고    scopus 로고
    • Self-organizing network for optimum supervised learning
    • J. Y. R. Parekh and V. Honavar, "Self-organizing network for optimum supervised learning," IEEE Trans. on Neural Networks, vol. 11, no. 2, pp. 436-451, 2000.
    • (2000) IEEE Trans. on Neural Networks , vol.11 , Issue.2 , pp. 436-451
    • Parekh, J.Y.R.1    Honavar, V.2
  • 6
    • 0029180618 scopus 로고
    • Convergence suppression and divergence facilitation: New approach to prune hidden layer and weights of feedforward neural networks
    • A. M. S. Yasui and J. Zurada, "Convergence suppression and divergence facilitation: New approach to prune hidden layer and weights of feedforward neural networks," IEEE Intl. Symp. on Circuits and Systems, 1995.
    • (1995) IEEE Intl. Symp. on Circuits and Systems
    • Yasui, A.M.S.1    Zurada, J.2
  • 7
    • 0030633575 scopus 로고    scopus 로고
    • A penalty function approach for pruning feedforward neural networks
    • R. Setiono, "A penalty function approach for pruning feedforward neural networks," Neural Computation, vol. 9, 1997.
    • (1997) Neural Computation , vol.9
    • Setiono, R.1
  • 10
    • 0030130727 scopus 로고    scopus 로고
    • A quantitative study of experimental evaluation of neural network leraning algorithms
    • L. Prechelt, "A quantitative study of experimental evaluation of neural network leraning algorithms," Neural Networks, vol. 9, pp. 457-462, 1996.
    • (1996) Neural Networks , vol.9 , pp. 457-462
    • Prechelt, L.1
  • 12
    • 0032117676 scopus 로고    scopus 로고
    • Using model trees for classification
    • S. I. G. H. E. Frank, Y. Wang and I. Witten, "Using model trees for classification," Machine Learning, vol. 32, no. 1, pp. 63-76, 1997.
    • (1997) Machine Learning , vol.32 , Issue.1 , pp. 63-76
    • Frank, S.I.G.H.E.1    Wang, Y.2    Witten, I.3
  • 14
    • 0035654279 scopus 로고    scopus 로고
    • Feedforward neural network construction using cross-validation
    • R. Setiono, "Feedforward neural network construction using cross-validation," Neural Computation, vol. 13, no. 12, pp. 2865-2877, 2001.
    • (2001) Neural Computation , vol.13 , Issue.12 , pp. 2865-2877
    • Setiono, R.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.