메뉴 건너뛰기




Volumn 21, Issue 6, 2010, Pages 972-984

Novel maximum-margin training algorithms for supervised neural networks

Author keywords

Information theory; Maximal margin (MM) principle; Multilayer perceptron; Pattern recognition; Supervised learning

Indexed keywords

ADAPTIVE LEARNING RATES; BENCHMARK DATA; BINARY CLASSIFIERS; CONSTRAINED OPTIMIZATION PROBLEMS; DATA SETS; ERROR RATE; FISHER DISCRIMINANT ANALYSIS; GRADIENT DESCENT; HIDDEN LAYERS; MAXIMAL-MARGIN (MM) PRINCIPLE; MULTI LAYER PERCEPTRON; NEURAL MODELS; OBJECTIVE FUNCTIONS; REAL-WORLD PROBLEM; ROC CURVES; SINGLE PROCESS; SPACE COMPLEXITY; STATISTICAL DISTRIBUTION; SUPERVISED NEURAL NETWORKS; SUPPORT VECTOR; TIME AND SPACE; TIME COMPLEXITY; TRAINING ALGORITHMS; TRAINING FRAMEWORK; TRAINING METHODS;

EID: 77953123103     PISSN: 10459227     EISSN: None     Source Type: Journal    
DOI: 10.1109/TNN.2010.2046423     Document Type: Article
Times cited : (75)

References (27)
  • 2
    • 0346110814 scopus 로고    scopus 로고
    • Fast obstacle detection for urban traffic situations
    • Sep.
    • U. Franke and S. Heinrich, "Fast obstacle detection for urban traffic situations," IEEE Trans. Intell. Transp. Syst., vol.3, no.3, pp. 173-181, Sep. 2002.
    • (2002) IEEE Trans. Intell. Transp. Syst. , vol.3 , Issue.3 , pp. 173-181
    • Franke, U.1    Heinrich, S.2
  • 4
    • 0025627940 scopus 로고
    • Universal approximation of an unknown mapping and its derivatives using multilayer feedforward networks
    • K. Hornik, M. Stinchcombe, and H. White, "Universal approximation of an unknown mapping and its derivatives using multilayer feedforward networks," Neural Netw., vol.3, no.5, pp. 551-560, 1990.
    • (1990) Neural Netw. , vol.3 , Issue.5 , pp. 551-560
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 5
    • 49149131955 scopus 로고    scopus 로고
    • Beyond feedforward models trained by backpropagation: A practical training tool for a more efficient universal approximator
    • Jun.
    • R. Ilin, R. Kozma, and P. J. Werbos, "Beyond feedforward models trained by backpropagation: A practical training tool for a more efficient universal approximator," IEEE Trans. Neural Netw., vol.19, no.6, pp. 929-937, Jun. 2008.
    • (2008) IEEE Trans. Neural Netw. , vol.19 , Issue.6 , pp. 929-937
    • Ilin, R.1    Kozma, R.2    Werbos, P.J.3
  • 6
    • 0036082984 scopus 로고    scopus 로고
    • Binary classification by SVM based tree type neural network
    • Honolulu, HI, May
    • A. K. D. Jayadeva and S. Chandra, "Binary classification by SVM based tree type neural network," in Proc. Int. Conf. Neural Netw., Honolulu, HI, May 2002, vol.3, pp. 2773-2778.
    • (2002) Proc. Int. Conf. Neural Netw. , vol.3 , pp. 2773-2778
    • Jayadeva, A.K.D.1    Chandra, S.2
  • 7
    • 40549088280 scopus 로고    scopus 로고
    • Training two-layered feedforward networks with variable projection method
    • Feb.
    • C. T. Kim and J. J. Lee, "Training two-layered feedforward networks with variable projection method," IEEE Trans. Neural Netw., vol.19, no.2, pp. 371-375, Feb. 2008.
    • (2008) IEEE Trans. Neural Netw. , vol.19 , Issue.2 , pp. 371-375
    • Kim, C.T.1    Lee, J.J.2
  • 8
    • 3042674061 scopus 로고    scopus 로고
    • Gabor-based kernel PCA with fractional power polynomial models for face recognition
    • May
    • C. Liu, "Gabor-based kernel PCA with fractional power polynomial models for face recognition," IEEE Trans. Pattern Anal. Mach. Intell., vol.26, no.5, pp. 572-581, May 2004.
    • (2004) IEEE Trans. Pattern Anal. Mach. Intell. , vol.26 , Issue.5 , pp. 572-581
    • Liu, C.1
  • 10
    • 59849122121 scopus 로고    scopus 로고
    • Applications of information theory, genetic algorithms, and neural models to predict oil flow
    • O. Ludwig, U. Nunes, R. Araujo, L. Schnitman, and H. A. Lepikson, "Applications of information theory, genetic algorithms, and neural models to predict oil flow," Commun. Nonlinear Sci. Numer. Simul., vol.14, no.7, pp. 2870-2885, 2009.
    • (2009) Commun. Nonlinear Sci. Numer. Simul. , vol.14 , Issue.7 , pp. 2870-2885
    • Ludwig, O.1    Nunes, U.2    Araujo, R.3    Schnitman, L.4    Lepikson, H.A.5
  • 11
    • 34047138821 scopus 로고    scopus 로고
    • High dimensional classification with Bayesian neural networks and Dirichlet diffusion trees
    • Berlin, Germany: Springer-Verlag
    • R. M. Neal and J. Zhang, "High dimensional classification with Bayesian neural networks and Dirichlet diffusion trees," in Studies in Fuzziness and Soft Computing. Berlin, Germany: Springer-Verlag, 2006, vol.207, pp. 265-296.
    • (2006) Studies in Fuzziness and Soft Computing , vol.207 , pp. 265-296
    • Neal, R.M.1    Zhang, J.2
  • 12
    • 84965074539 scopus 로고    scopus 로고
    • Maximizing margins of multilayer neural networks
    • Singapore, Nov.
    • T. Nishikawa and S. Abe, "Maximizing margins of multilayer neural networks," in Proc. 9th Int. Conf. Neural Inf. Process., Singapore, Nov. 2002, vol.1, pp. 322-326.
    • (2002) Proc. 9th Int. Conf. Neural Inf. Process , vol.1 , pp. 322-326
    • Nishikawa, T.1    Abe, S.2
  • 13
    • 33749240206 scopus 로고    scopus 로고
    • Multi-class pattern classification using neural networks
    • Jan.
    • G. Ou and Y. L. Murphey, "Multi-class pattern classification using neural networks," Pattern Recognit., vol.40, no.1, pp. 4-18, Jan. 2007.
    • (2007) Pattern Recognit. , vol.40 , Issue.1 , pp. 4-18
    • Ou, G.1    Murphey, Y.L.2
  • 14
    • 24344458137 scopus 로고    scopus 로고
    • Feature selection based on mutual information: Criteria of max-dependency, max-relevance, and min-redundancy
    • Aug.
    • H. Peng, F. Long, and C. Ding, "Feature selection based on mutual information: Criteria of max-dependency, max-relevance, and min-redundancy, " IEEE Trans Pattern Anal. Mach. Intell., vol.27, no.8, pp. 1226-1238, Aug. 2005.
    • (2005) IEEE Trans Pattern Anal. Mach. Intell. , vol.27 , Issue.8 , pp. 1226-1238
    • Peng, H.1    Long, F.2    Ding, C.3
  • 15
    • 0003120218 scopus 로고    scopus 로고
    • Sequential minimal optimizer: A fast algorithm for training support vector machines
    • J. C. Platt, "Sequential minimal optimizer: A fast algorithm for training support vector machines," Microsoft Research, Tech. Rep. MSR-TR-98-114, 1998.
    • (1998) Microsoft Research, Tech. Rep. MSR-TR-98-114
    • Platt, J.C.1
  • 16
    • 0342502195 scopus 로고    scopus 로고
    • Soft margins for AdaBoost
    • Norwell, MA: Kluwer
    • G. Ratsch, T. Onoda, and K. Müller, "Soft margins for AdaBoost," in Machine Learning. Norwell, MA: Kluwer, 2001, vol.42, pp. 287-320.
    • (2001) Machine Learning , vol.42 , pp. 287-320
    • Ratsch, G.1    Onoda, T.2    Müller, K.3
  • 17
    • 0035111818 scopus 로고    scopus 로고
    • Nonlinear kernel-based statistical pattern analysis
    • Jan.
    • A. Ruiz and P. E. Lopez-de-Teruel, "Nonlinear kernel-based statistical pattern analysis," IEEE Trans. Neural Netw., vol.12, no.1, pp. 16-32, Jan. 2001.
    • (2001) IEEE Trans. Neural Netw. , vol.12 , Issue.1 , pp. 16-32
    • Ruiz, A.1    Lopez-De-Teruel, P.E.2
  • 18
    • 0033130747 scopus 로고    scopus 로고
    • Optimization of neural networks: A comparative analysis of the genetic algorithm and simulated annealing
    • May
    • R. Sexton, R. Dorsey, and J. Johnson, "Optimization of neural networks: A comparative analysis of the genetic algorithm and simulated annealing," Eur. J. Oper. Res., vol.114, no.3, pp. 589-601, May 1999.
    • (1999) Eur. J. Oper. Res. , vol.114 , Issue.3 , pp. 589-601
    • Sexton, R.1    Dorsey, R.2    Johnson, J.3
  • 19
    • 4644354708 scopus 로고    scopus 로고
    • Sparseness of support vector machines
    • I. Steinwart, "Sparseness of support vector machines," J. Mach. Learn. Res., vol.4, no.12, pp. 1071-1105, 2003.
    • (2003) J. Mach. Learn. Res. , vol.4 , Issue.12 , pp. 1071-1105
    • Steinwart, I.1
  • 20
    • 0033332525 scopus 로고    scopus 로고
    • Exploring constructive cascade networks
    • Nov.
    • N. K. Treadgold and T. D. Gedeon, "Exploring constructive cascade networks," IEEE Trans. Neural Netw., vol.10, no.6, pp. 1335-1350, Nov. 1999.
    • (1999) IEEE Trans. Neural Netw. , vol.10 , Issue.6 , pp. 1335-1350
    • Treadgold, N.K.1    Gedeon, T.D.2
  • 21
    • 21844440579 scopus 로고    scopus 로고
    • Core vector machines: Fast SVM training on very large data sets
    • Apr.
    • I. W. Tsang, J. T. Kwok, and P. M. Cheung, "Core vector machines: Fast SVM training on very large data sets," J. Mach. Learn. Res., vol.6, pp. 363-392, Apr. 2005.
    • (2005) J. Mach. Learn. Res. , vol.6 , pp. 363-392
    • Tsang, I.W.1    Kwok, J.T.2    Cheung, P.M.3
  • 23
    • 0001024505 scopus 로고
    • On the uniform convergence of relative frequencies of events to their probabilities
    • V. Vapnik and A. Chervonenkis, "On the uniform convergence of relative frequencies of events to their probabilities," Theory Probab. Appl., vol.16, no.2, pp. 264-280, 1971.
    • (1971) Theory Probab. Appl. , vol.16 , Issue.2 , pp. 264-280
    • Vapnik, V.1    Chervonenkis, A.2
  • 24
    • 14544297033 scopus 로고    scopus 로고
    • KPCA plus LDA: A complete kernel Fisher discriminant framework for feature extraction and recognition
    • Feb.
    • J. Yang, A. F. Frangi, J. U. Yang, D. Zhang, and Z. Jin, "KPCA plus LDA: A complete kernel Fisher discriminant framework for feature extraction and recognition," IEEE Trans. Pattern Anal. Mach. Intell., vol.27, no.2, pp. 230-244, Feb. 2005.
    • (2005) IEEE Trans. Pattern Anal. Mach. Intell. , vol.27 , Issue.2 , pp. 230-244
    • Yang, J.1    Frangi, A.F.2    Yang, J.U.3    Zhang, D.4    Jin, Z.5
  • 25
    • 4344623228 scopus 로고    scopus 로고
    • Neural network regularization and ensembling using multi-objective evolutionary algorithms
    • Portland, OR, Jun. DOI: 10.1109/ CEC.2004.1330830
    • J. Yaochu, T. Okabe, and B. Sendhoff, "Neural network regularization and ensembling using multi-objective evolutionary algorithms," in Proc. Congr. Evol. Comput., Portland, OR, Jun. 2004, DOI: 10.1109/ CEC.2004.1330830 .
    • (2004) Proc. Congr. Evol. Comput.
    • Yaochu, J.1    Okabe, T.2    Sendhoff, B.3
  • 26
    • 0032207884 scopus 로고    scopus 로고
    • CARVE: A constructive algorithm for real-valued examples
    • Nov.
    • S. Young and T. Downs, "CARVE: A constructive algorithm for real-valued examples," IEEE Trans. Neural Netw., vol.9, no.6, pp. 1180-1190, Nov. 1998.
    • (1998) IEEE Trans. Neural Netw. , vol.9 , Issue.6 , pp. 1180-1190
    • Young, S.1    Downs, T.2
  • 27
    • 67349089521 scopus 로고    scopus 로고
    • Maximum margin clustering made practical
    • Apr.
    • K. Zhang, I. W. Tsang, and J. T. Kwok, "Maximum margin clustering made practical," IEEE Trans. Neural Netw., vol.20, no.4, pp. 583-596, Apr. 2009.
    • (2009) IEEE Trans. Neural Netw. , vol.20 , Issue.4 , pp. 583-596
    • Zhang, K.1    Tsang, I.W.2    Kwok, J.T.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.