메뉴 건너뛰기




Volumn 4, Issue 159, 2011, Pages

The crystal structure of a self-activating g protein α subunit reveals its distinct mechanism of signal initiation

Author keywords

[No Author keywords available]

Indexed keywords

G PROTEIN ALPHA; G PROTEIN COUPLED RECEPTOR; GUANINE NUCLEOTIDE BINDING PROTEIN; PROTEIN SUBUNIT; UNCLASSIFIED DRUG; ADENOSINE DIPHOSPHATE; ADENOSINE TRIPHOSPHATE; ARABIDOPSIS PROTEIN; GPA1 PROTEIN, ARABIDOPSIS; GUANINE NUCLEOTIDE BINDING PROTEIN ALPHA SUBUNIT; GUANINE NUCLEOTIDE EXCHANGE FACTOR;

EID: 79851474025     PISSN: 19450877     EISSN: 19379145     Source Type: Journal    
DOI: 10.1126/scisignal.2001446     Document Type: Article
Times cited : (106)

References (31)
  • 1
    • 0030920782 scopus 로고    scopus 로고
    • G protein mechanisms: Insights from structural analysis
    • S. R. Sprang, G protein mechanisms: Insights from structural analysis. Annu. Rev. Biochem. 66, 639-678 (1997).
    • (1997) Annu. Rev. Biochem. , vol.66 , pp. 639-678
    • Sprang, S.R.1
  • 2
    • 0037171778 scopus 로고    scopus 로고
    • Structural determinants for GoLoco-induced inhibition of nucleotide release by Ga subunits
    • R. J. Kimple, M. E. Kimple, L. Betts, J. Sondek, D. P. Siderovski, Structural determinants for GoLoco-induced inhibition of nucleotide release by Ga subunits. Nature 416, 878-881 (2002).
    • (2002) Nature , vol.416 , pp. 878-881
    • Kimple, R.J.1    Kimple, M.E.2    Betts, L.3    Sondek, J.4    Siderovski, D.P.5
  • 3
    • 15544373780 scopus 로고    scopus 로고
    • Structure of the p115RhoGEF rgRGS domain-Gα13/i1 chimera complex suggests convergent evolution of a GTPase activator
    • Z. Chen, W. D. Singer, P. C. Sternweis, S. R. Sprang, Structure of the p115RhoGEF rgRGS domain-Gα13/i1 chimera complex suggests convergent evolution of a GTPase activator. Nat. Struct. Mol. Biol. 12, 191-197 (2005).
    • (2005) Nat. Struct. Mol. Biol. , vol.12 , pp. 191-197
    • Chen, Z.1    Singer, W.D.2    Sternweis, P.C.3    Sprang, S.R.4
  • 4
    • 0037161303 scopus 로고    scopus 로고
    • Direct identification of a G protein ubiquitination site by mass spectrometry
    • L. A. Marotti Jr., R. Newitt, Y. Wang, R. Aebersold, H. G. Dohlman, Direct identification of a G protein ubiquitination site by mass spectrometry. Biochemistry 41, 5067-5074 (2002).
    • (2002) Biochemistry , vol.41 , pp. 5067-5074
    • Marotti Jr., L.A.1    Newitt, R.2    Wang, Y.3    Aebersold, R.4    Dohlman, H.G.5
  • 6
    • 0023096422 scopus 로고
    • The effect of activating ligands on the intrinsic fluorescence of guanine nucleotide-binding regulatory proteins
    • T. Higashijima, K. M. Ferguson, P. C. Sternweis, E. M. Ross, M. D. Smigel, A. G. Gilman, The effect of activating ligands on the intrinsic fluorescence of guanine nucleotide-binding regulatory proteins. J. Biol. Chem. 262, 752-756 (1987).
    • (1987) J. Biol. Chem. , vol.262 , pp. 752-756
    • Higashijima, T.1    Ferguson, K.M.2    Sternweis, P.C.3    Ross, E.M.4    Smigel, M.D.5    Gilman, A.G.6
  • 9
    • 0027132717 scopus 로고
    • The 2.2 Å crystal structure of transducin-a complexed with GTPγS
    • J. P. Noel, H. E. Hamm, P. B. Sigler, The 2.2 Å crystal structure of transducin-a complexed with GTPγS. Nature 366, 654-663 (1993).
    • (1993) Nature , vol.366 , pp. 654-663
    • Noel, J.P.1    Hamm, H.E.2    Sigler, P.B.3
  • 11
    • 4544338193 scopus 로고    scopus 로고
    • Perturbing the linker regions of the α-subunit of transducin: A new class of constitutively active GTP-binding proteins
    • S. Majumdar, S. Ramachandran, R. A. Cerione, Perturbing the linker regions of the α-subunit of transducin: A new class of constitutively active GTP-binding proteins. J. Biol. Chem. 279, 40137-40145 (2004).
    • (2004) J. Biol. Chem. , vol.279 , pp. 40137-40145
    • Majumdar, S.1    Ramachandran, S.2    Cerione, R.A.3
  • 13
    • 0035085209 scopus 로고    scopus 로고
    • Probing the mechanism of rhodopsincatalyzed transducin activation
    • M. Natochin, M. Moussaif, N. O. Artemyev, Probing the mechanism of rhodopsincatalyzed transducin activation. J. Neurochem. 77, 202-210 (2001).
    • (2001) J. Neurochem. , vol.77 , pp. 202-210
    • Natochin, M.1    Moussaif, M.2    Artemyev, N.O.3
  • 14
    • 0028044113 scopus 로고
    • Requirement for intramolecular domain interaction in activation of G protein a subunit by aluminum fluoride and GDP but not by GTPγS
    • J. Codina, L. Birnbaumer, Requirement for intramolecular domain interaction in activation of G protein a subunit by aluminum fluoride and GDP but not by GTPγS. J. Biol. Chem. 269, 29339-29342 (1994).
    • (1994) J. Biol. Chem. , vol.269 , pp. 29339-29342
    • Codina, J.1    Birnbaumer, L.2
  • 15
    • 0027741139 scopus 로고
    • Separate GTP binding and GTPase activating domains of a Gα subunit
    • D. W. Markby, R. Onrust, H. R. Bourne, Separate GTP binding and GTPase activating domains of a Gα subunit. Science 262, 1895-1901 (1993).
    • (1993) Science , vol.262 , pp. 1895-1901
    • Markby, D.W.1    Onrust, R.2    Bourne, H.R.3
  • 16
    • 0344995242 scopus 로고    scopus 로고
    • Interdomain interactions regulate GDP release from heterotrimeric G proteins
    • A. E. Remmers, C. Engel, M. Liu, R. R. Neubig, Interdomain interactions regulate GDP release from heterotrimeric G proteins. Biochemistry 38, 13795-13800 (1999).
    • (1999) Biochemistry , vol.38 , pp. 13795-13800
    • Remmers, A.E.1    Engel, C.2    Liu, M.3    Neubig, R.R.4
  • 17
    • 3142723472 scopus 로고    scopus 로고
    • αo-coupled receptors are determined by Gα-specific interdomain interactions that affect GDP release rates
    • αo-coupled receptors are determined by Gα-specific interdomain interactions that affect GDP release rates. J. Biol. Chem. 279, 29787-29796 (2004).
    • (2004) J. Biol. Chem. , vol.279 , pp. 29787-29796
    • Zhang, Q.1    Dickson, A.2    Doupnik, C.A.3
  • 18
    • 0032474767 scopus 로고    scopus 로고
    • G-protein diseases furnish a model for the turn-on switch
    • T. Iiri, Z. Farfel, H. R. Bourne, G-protein diseases furnish a model for the turn-on switch. Nature 394, 35-38 (1998).
    • (1998) Nature , vol.394 , pp. 35-38
    • Iiri, T.1    Farfel, Z.2    Bourne, H.R.3
  • 19
    • 4344670030 scopus 로고    scopus 로고
    • Purification and in vitro functional analysis of the Arabidopsis thaliana regulator of G-protein signaling-1
    • F. S. Willard, D. P. Siderovski, Purification and in vitro functional analysis of the Arabidopsis thaliana regulator of G-protein signaling-1. Methods Enzymol. 389, 320-338 (2004).
    • (2004) Methods Enzymol. , vol.389 , pp. 320-338
    • Willard, F.S.1    Siderovski, D.P.2
  • 20
    • 0031059866 scopus 로고    scopus 로고
    • Processing of X-ray diffraction data collected in oscillation mode
    • Z. Otwinowski, W. Minor, Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307-326 (1997).
    • (1997) Methods Enzymol. , vol.276 , pp. 307-326
    • Otwinowski, Z.1    Minor, W.2
  • 25
    • 77954288774 scopus 로고    scopus 로고
    • Dali server: Conservation mapping in 3D
    • L. Holm, P. Rosenstrom, Dali server: Conservation mapping in 3D. Nucleic Acids Res. 38, W545-W549 (2010).
    • (2010) Nucleic Acids Res. , vol.38
    • Holm, L.1    Rosenstrom, P.2
  • 28
    • 34248209062 scopus 로고    scopus 로고
    • Conformational dynamics of the major yeast phosphatidylinositol transfer protein Sec14p: Insight into the mechanisms of phospholipid exchange and diseases of Sec14p-like protein deficiencies
    • M. M. Ryan, B. R. Temple, S. E. Phillips, V. A. Bankaitis, Conformational dynamics of the major yeast phosphatidylinositol transfer protein Sec14p: Insight into the mechanisms of phospholipid exchange and diseases of Sec14p-like protein deficiencies. Mol. Biol. Cell 18, 1928-1942 (2007).
    • (2007) Mol. Biol. Cell , vol.18 , pp. 1928-1942
    • Ryan, M.M.1    Temple, B.R.2    Phillips, S.E.3    Bankaitis, V.A.4
  • 30
    • 33847770470 scopus 로고    scopus 로고
    • Multiscale modeling of nucleosome dynamics
    • S. Sharma, F. Ding, N. V. Dokholyan, Multiscale modeling of nucleosome dynamics. Biophys. J. 92, 1457-1470 (2007).
    • (2007) Biophys. J. , vol.92 , pp. 1457-1470
    • Sharma, S.1    Ding, F.2    Dokholyan, N.V.3
  • 31
    • 79851476689 scopus 로고    scopus 로고
    • note
    • Acknowledgments: We thank J. Vanhooke for valuable help throughout the crystallization process, B. Wallace and M. Miley for collecting diffraction data, A. Tripathy (University of North Carolina Macromolecular Interactions Facility) for instruction in CD spectroscopy, and J. Sondek for sharing equipment and insightful comments on the manuscript. Funding: This work was supported by grants from the National Institutes of General Medical Sciences (NIGMS) (R01GM065989), Department of Energy (DE-FG02-05er15671), and National Science Foundation (MCB-0723515 and MCB-0718202) to A.M.J. and NIGMS (R01GM080739) to H.G.D. J.C.J. was supported by a Ruth L. Kirschstein postdoctoral award. Author contributions: J.C.J. managed the project, made reagents, designed the experiments, acquired and analyzed the data, and wrote the manuscript; J.W.D. made reagents, acquired and analyzed the data, and crystallized the protein; M.M. solved the crystal structure, analyzed the data, and wrote the manuscript; B.R.S.T. designed the experiments, acquired and analyzed the data, and wrote the manuscript; H.G.D. and A.M.J. analyzed the data, managed the project, and wrote the manuscript. Competing interests: The authors declare that they have no competing interests. Accession numbers: Structure coordinates for AtGPA1 are deposited in the Protein Data Bank (www.pdb.org) as 2XTZ.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.