메뉴 건너뛰기




Volumn 6, Issue 1, 2011, Pages 50-61

Self-Organizing Maps applied to ecological sciences

Author keywords

[No Author keywords available]

Indexed keywords

DATA INTERPRETATION; DATA SET; ECOLOGICAL APPROACH; ECOLOGICAL MODELING; ENVIRONMENTAL FACTOR; LITERATURE REVIEW; MAP; NUMERICAL MODEL; VISUALIZATION;

EID: 79651475285     PISSN: 15749541     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ecoinf.2010.11.002     Document Type: Review
Times cited : (175)

References (181)
  • 1
    • 46149117820 scopus 로고    scopus 로고
    • Using SOM and PCA for analysing and interpreting data from a P-removal SBR
    • Aguado D., Montoya T., Borras L., Seco A., Ferrer J. Using SOM and PCA for analysing and interpreting data from a P-removal SBR. Eng. Appl. Artif. Intel. 2008, 21:919-930.
    • (2008) Eng. Appl. Artif. Intel. , vol.21 , pp. 919-930
    • Aguado, D.1    Montoya, T.2    Borras, L.3    Seco, A.4    Ferrer, J.5
  • 2
    • 0034804080 scopus 로고    scopus 로고
    • Application of the Kohonen neural network in coastal water management: methodological development for the assessment and prediction of water quality
    • Aguilera P.A., Frenich A.G., Torres J.A., Castro H., Vidal J.L.M., Canton M. Application of the Kohonen neural network in coastal water management: methodological development for the assessment and prediction of water quality. Water Res. 2001, 35:4053-4062.
    • (2001) Water Res. , vol.35 , pp. 4053-4062
    • Aguilera, P.A.1    Frenich, A.G.2    Torres, J.A.3    Castro, H.4    Vidal, J.L.M.5    Canton, M.6
  • 3
    • 33845232044 scopus 로고    scopus 로고
    • Quantifying uncertainty in high-resolution coupled hydrodynamic-ecosystem models
    • Allen J.I., Somefield P.J., Gilbert F.J. Quantifying uncertainty in high-resolution coupled hydrodynamic-ecosystem models. J. Mar. Syst. 2007, 64:3-14.
    • (2007) J. Mar. Syst. , vol.64 , pp. 3-14
    • Allen, J.I.1    Somefield, P.J.2    Gilbert, F.J.3
  • 5
    • 0026898892 scopus 로고
    • Quantifying the neighbourhood preservation of self-organizing feature maps
    • Bauer H.U., Pawelzik K.R. Quantifying the neighbourhood preservation of self-organizing feature maps. IEEE T. Neural Networ. 1992, 3:570-579.
    • (1992) IEEE T. Neural Networ. , vol.3 , pp. 570-579
    • Bauer, H.U.1    Pawelzik, K.R.2
  • 6
    • 0031101545 scopus 로고    scopus 로고
    • Growing a hypercubical output space in a self-organizing feature map
    • Bauer H.U., Villmann T. Growing a hypercubical output space in a self-organizing feature map. IEEE Trans. Neural Networ. 1997, 8:218-226.
    • (1997) IEEE Trans. Neural Networ. , vol.8 , pp. 218-226
    • Bauer, H.U.1    Villmann, T.2
  • 7
    • 20844436302 scopus 로고    scopus 로고
    • Genetic algorithms and self-organizing maps: a powerful combination for modelling complex QSAR and QSPR problems
    • Bayram E., Santiago P., Harris R., Xiao Y.D., Clauset A.J., Schmitt J.D. Genetic algorithms and self-organizing maps: a powerful combination for modelling complex QSAR and QSPR problems. J. Comp. Aid. Mol. Des. 2004, 18:483-493.
    • (2004) J. Comp. Aid. Mol. Des. , vol.18 , pp. 483-493
    • Bayram, E.1    Santiago, P.2    Harris, R.3    Xiao, Y.D.4    Clauset, A.J.5    Schmitt, J.D.6
  • 9
    • 0028810397 scopus 로고
    • Two soft relatives of learning vector quantization
    • Bezdek J.C., Pal N.R. Two soft relatives of learning vector quantization. Neural Networ. 1995, 8:729-743.
    • (1995) Neural Networ. , vol.8 , pp. 729-743
    • Bezdek, J.C.1    Pal, N.R.2
  • 10
    • 33745337472 scopus 로고    scopus 로고
    • Forecasting chlorine residuals in a water distribution system using a general regression neural network
    • Bowden G.J., Nixon J.B., Dandy G.C., Maier H.R., Holmes M. Forecasting chlorine residuals in a water distribution system using a general regression neural network. Math. Comput. Model. 2005, 44:469-484.
    • (2005) Math. Comput. Model. , vol.44 , pp. 469-484
    • Bowden, G.J.1    Nixon, J.B.2    Dandy, G.C.3    Maier, H.R.4    Holmes, M.5
  • 11
    • 10644295753 scopus 로고    scopus 로고
    • Input determination for neural network models in water resources applications. Part 1-background and methodology
    • Bowden G.J., Dany G.C., Maier H.R. Input determination for neural network models in water resources applications. Part 1-background and methodology. J. Hydrol. 2006, 301:75-92.
    • (2006) J. Hydrol. , vol.301 , pp. 75-92
    • Bowden, G.J.1    Dany, G.C.2    Maier, H.R.3
  • 12
    • 0035673820 scopus 로고    scopus 로고
    • Utilisation of non-supervised neural networks and principal component analysis to study fish assemblages
    • Brosse S., Giraudel J.L., Lek S. Utilisation of non-supervised neural networks and principal component analysis to study fish assemblages. Ecol. Model. 2001, 146:159-166.
    • (2001) Ecol. Model. , vol.146 , pp. 159-166
    • Brosse, S.1    Giraudel, J.L.2    Lek, S.3
  • 13
    • 0037467691 scopus 로고    scopus 로고
    • New results concerning exponential stability and periodic solutions of delayed cellular neural networks
    • Cao J.D. New results concerning exponential stability and periodic solutions of delayed cellular neural networks. Phys. Lett. A 2003, 307:136-147.
    • (2003) Phys. Lett. A , vol.307 , pp. 136-147
    • Cao, J.D.1
  • 15
    • 40749144865 scopus 로고    scopus 로고
    • Review of Self-Organizing Map (SOM) approach in water resources: analysis, modeling and application
    • Céréghino R., Park Y.-S. Review of Self-Organizing Map (SOM) approach in water resources: analysis, modeling and application. Environ. Modell. Softw. 2008, 23:835-845.
    • (2008) Environ. Modell. Softw. , vol.23 , pp. 835-845
    • Céréghino, R.1    Park, Y.-S.2
  • 16
    • 0042285653 scopus 로고    scopus 로고
    • Predicting the species richness of aquatic insects in streams using a limited number of environmental variables
    • Céréghino R., Park Y.-S., Compin A., Lek S. Predicting the species richness of aquatic insects in streams using a limited number of environmental variables. J. N. Am. Benthol. Soc. 2003, 22:442-456.
    • (2003) J. N. Am. Benthol. Soc. , vol.22 , pp. 442-456
    • Céréghino, R.1    Park, Y.-S.2    Compin, A.3    Lek, S.4
  • 17
    • 34247120229 scopus 로고    scopus 로고
    • Elucidation and short-term forecasting of microcystin concentrations in Lake Suwa (Japan) by means of artificial neural networks and evolutionary algorithms
    • Chan W.S., Recknagel F., Cao H., Park H.-D. Elucidation and short-term forecasting of microcystin concentrations in Lake Suwa (Japan) by means of artificial neural networks and evolutionary algorithms. Water Res. 2007, 41:2247-2255.
    • (2007) Water Res. , vol.41 , pp. 2247-2255
    • Chan, W.S.1    Recknagel, F.2    Cao, H.3    Park, H.-D.4
  • 18
    • 77649185559 scopus 로고    scopus 로고
    • Assessing the effort of meteorological variables for evaporation estimation by self-organizing map neural network
    • Chang F.-J., Chang L.-C., Kao H.-S., Wu G.-R. Assessing the effort of meteorological variables for evaporation estimation by self-organizing map neural network. J. Hydrol. 2010, 384:118-129.
    • (2010) J. Hydrol. , vol.384 , pp. 118-129
    • Chang, F.-J.1    Chang, L.-C.2    Kao, H.-S.3    Wu, G.-R.4
  • 19
    • 0027187261 scopus 로고
    • The temporal Kohønen map
    • Chappell G., Taylor J.G. The temporal Kohønen map. Neural Netw. 1993, 6:441-445.
    • (1993) Neural Netw. , vol.6 , pp. 441-445
    • Chappell, G.1    Taylor, J.G.2
  • 20
    • 0003166043 scopus 로고
    • The comparative ability of self-organizing neural networks to define cluster structure
    • Chen S.K., Mangiameli P., West D. The comparative ability of self-organizing neural networks to define cluster structure. Omega Int. J. Manage. S. 1995, 23:271-279.
    • (1995) Omega Int. J. Manage. S. , vol.23 , pp. 271-279
    • Chen, S.K.1    Mangiameli, P.2    West, D.3
  • 21
    • 33750188854 scopus 로고    scopus 로고
    • Pattern detection of movement behaviors in genotype variation of Drosophila melanogaster by using self-organizing map
    • Choi K.-H., Kim J.-S., Kim Y.S., Yoo M.-A., Chon T.-S. Pattern detection of movement behaviors in genotype variation of Drosophila melanogaster by using self-organizing map. Ecol. Inform. 2006, 1:219-228.
    • (2006) Ecol. Inform. , vol.1 , pp. 219-228
    • Choi, K.-H.1    Kim, J.-S.2    Kim, Y.S.3    Yoo, M.-A.4    Chon, T.-S.5
  • 22
    • 33750181522 scopus 로고    scopus 로고
    • Ecological informatics as an advanced interdisciplinary interpretation of ecosystems
    • Chon T.-S., Park Y.-S. Ecological informatics as an advanced interdisciplinary interpretation of ecosystems. Ecol. Inform. 2006, 1:213-217.
    • (2006) Ecol. Inform. , vol.1 , pp. 213-217
    • Chon, T.-S.1    Park, Y.-S.2
  • 23
    • 0030426363 scopus 로고    scopus 로고
    • Patternizing communities by using an artificial neural network
    • Chon T.-S., Park Y.-S., Moon K., Cha E. Patternizing communities by using an artificial neural network. Ecol. Model. 1996, 90:69-78.
    • (1996) Ecol. Model. , vol.90 , pp. 69-78
    • Chon, T.-S.1    Park, Y.-S.2    Moon, K.3    Cha, E.4
  • 24
    • 0034734108 scopus 로고    scopus 로고
    • Determining temporal pattern of community dynamics by using unsupervised learning algorithms
    • Chon T.-S., Park Y.-S., Park J.H. Determining temporal pattern of community dynamics by using unsupervised learning algorithms. Ecol. Model. 2000, 132:151-166.
    • (2000) Ecol. Model. , vol.132 , pp. 151-166
    • Chon, T.-S.1    Park, Y.-S.2    Park, J.H.3
  • 25
    • 1942521804 scopus 로고    scopus 로고
    • Implementation of computational methods to pattern recognition of movement behavior of Blattella germanica (Blattaria: Blattellidae) treated with Ca2+ signal inducing chemicals
    • Chon T.-S., Park Y.-S., Park K.Y., Choi S.-Y., Kim K.T., Cho E.C. Implementation of computational methods to pattern recognition of movement behavior of Blattella germanica (Blattaria: Blattellidae) treated with Ca2+ signal inducing chemicals. Appl. Entomol. Zool. 2004, 39:79-96.
    • (2004) Appl. Entomol. Zool. , vol.39 , pp. 79-96
    • Chon, T.-S.1    Park, Y.-S.2    Park, K.Y.3    Choi, S.-Y.4    Kim, K.T.5    Cho, E.C.6
  • 26
    • 34548184715 scopus 로고    scopus 로고
    • Spatial patterns of macroinvertebrate functional feeding groups in streams in relation to physical variables and land-cover in southwestern France
    • Compin A., Céréghino R. Spatial patterns of macroinvertebrate functional feeding groups in streams in relation to physical variables and land-cover in southwestern France. Landscape Ecol. 2007, 22:1215-1225.
    • (2007) Landscape Ecol. , vol.22 , pp. 1215-1225
    • Compin, A.1    Céréghino, R.2
  • 27
    • 33845297719 scopus 로고    scopus 로고
    • Species spatial distribution and richness of stream insects in south-western France using artificial neural networks with potential use for biosurveillance
    • Berlin, Springer-Verlag, S. Lek, M. Scardi, P.F.M. Verdonschot, J.P. Descy, Y.S. Park (Eds.)
    • Compin A., Park Y.-S., Lek S., Céréghino R. Species spatial distribution and richness of stream insects in south-western France using artificial neural networks with potential use for biosurveillance. Modelling Community Structure in Freshwater Ecosystems 2005, 221-238. Berlin, Springer-Verlag. S. Lek, M. Scardi, P.F.M. Verdonschot, J.P. Descy, Y.S. Park (Eds.).
    • (2005) Modelling Community Structure in Freshwater Ecosystems , pp. 221-238
    • Compin, A.1    Park, Y.-S.2    Lek, S.3    Céréghino, R.4
  • 28
    • 58249085814 scopus 로고    scopus 로고
    • Improvements of the Biological Diatom Index (BDI): description and efficiency of the new version (BDI-2006). 9
    • Coste, M., Boutry, S., Tison-Rosebery, J., Delmas, F., 2009. Improvements of the Biological Diatom Index (BDI): description and efficiency of the new version (BDI-2006). 9, 621-650.
    • (2009) , pp. 621-650
    • Coste, M.1    Boutry, S.2    Tison-Rosebery, J.3    Delmas, F.4
  • 29
    • 33748435315 scopus 로고    scopus 로고
    • Integrating the improved CBP model with kernel SOM
    • Dai Q., Chen S. Integrating the improved CBP model with kernel SOM. Neurocomputing 2006, 69:2208-2216.
    • (2006) Neurocomputing , vol.69 , pp. 2208-2216
    • Dai, Q.1    Chen, S.2
  • 30
    • 0742271716 scopus 로고    scopus 로고
    • On the use of self-organizing maps to accelerate vector quantization
    • de Bodt E., Cottrell M., Letremy P., Verleysen M. On the use of self-organizing maps to accelerate vector quantization. Neurocomputing 2004, 56:187-203.
    • (2004) Neurocomputing , vol.56 , pp. 187-203
    • de Bodt, E.1    Cottrell, M.2    Letremy, P.3    Verleysen, M.4
  • 31
    • 0036826330 scopus 로고    scopus 로고
    • Uncovering hierarchical structure in data using the growing hierarchical self-organizing map
    • Dittenbach M., Rauber A., Merkl D. Uncovering hierarchical structure in data using the growing hierarchical self-organizing map. Neurocomputing 2002, 48:2002.
    • (2002) Neurocomputing , vol.48 , pp. 2002
    • Dittenbach, M.1    Rauber, A.2    Merkl, D.3
  • 32
    • 0035961983 scopus 로고    scopus 로고
    • Visualization of a set of parameters characterized by their correlation matrix
    • Dzemyda G. Visualization of a set of parameters characterized by their correlation matrix. Comput. Stat. Data Anal. 2001, 36:15-30.
    • (2001) Comput. Stat. Data Anal. , vol.36 , pp. 15-30
    • Dzemyda, G.1
  • 33
    • 0026575282 scopus 로고
    • Clustering proteins into families using artificial neural networks
    • Ferrán E.A., Ferrara P. Clustering proteins into families using artificial neural networks. Comput. Appl. Biosci. 1992, 8:39-44.
    • (1992) Comput. Appl. Biosci. , vol.8 , pp. 39-44
    • Ferrán, E.A.1    Ferrara, P.2
  • 34
    • 0345404395 scopus 로고    scopus 로고
    • Sufficient condition for self-organisation in the one dimensional SOM with a reduced width neighbourhood
    • Flanagan J.A. Sufficient condition for self-organisation in the one dimensional SOM with a reduced width neighbourhood. Neurocomputing 1998, 21:51-60.
    • (1998) Neurocomputing , vol.21 , pp. 51-60
    • Flanagan, J.A.1
  • 35
    • 0033578381 scopus 로고    scopus 로고
    • Applications of the self-organising feature map neural network in community data analysis
    • Foody G. Applications of the self-organising feature map neural network in community data analysis. Ecol. Model. 1999, 210:97-107.
    • (1999) Ecol. Model. , vol.210 , pp. 97-107
    • Foody, G.1
  • 36
    • 34548474765 scopus 로고    scopus 로고
    • Discriminating and mapping the C3 and C4 composition of grasslands in the northern Great Plains, USA
    • Foody G., Dash J. Discriminating and mapping the C3 and C4 composition of grasslands in the northern Great Plains, USA. Ecol. Inform. 2007, 2:89-93.
    • (2007) Ecol. Inform. , vol.2 , pp. 89-93
    • Foody, G.1    Dash, J.2
  • 37
    • 33746622513 scopus 로고    scopus 로고
    • SOM's mathematics
    • Fort J.C. SOM's mathematics. Neural Netw. 2006, 19:812-816.
    • (2006) Neural Netw. , vol.19 , pp. 812-816
    • Fort, J.C.1
  • 38
    • 0028602193 scopus 로고
    • Modeling of algal blooms in freshwaters using artificial neural networks
    • Computational Machanics Publication, Southampton, Boston, P. Zanetti (Ed.)
    • French M.N., Recknagel F. Modeling of algal blooms in freshwaters using artificial neural networks. Computer Techniques in Environmental Studies V. Environmental Systems II 1994, 87-94. Computational Machanics Publication, Southampton, Boston. P. Zanetti (Ed.).
    • (1994) Computer Techniques in Environmental Studies V. Environmental Systems II , pp. 87-94
    • French, M.N.1    Recknagel, F.2
  • 39
    • 33646195015 scopus 로고    scopus 로고
    • SOM of SOMs: self-organizing map which maps a group of self-organizing maps
    • Furukawa T. SOM of SOMs: self-organizing map which maps a group of self-organizing maps. Lect. Notes Comput. Sci. 2005, 3696:391-396.
    • (2005) Lect. Notes Comput. Sci. , vol.3696 , pp. 391-396
    • Furukawa, T.1
  • 40
    • 0842309545 scopus 로고    scopus 로고
    • Water quality assessment using diatom assemblages and advanced modelling techniques
    • Gevrey M., Rimet F., Park Y.-S., Giraudel J.L., Ector L., Lek S. Water quality assessment using diatom assemblages and advanced modelling techniques. Freshw. Biol. 2004, 49:208-220.
    • (2004) Freshw. Biol. , vol.49 , pp. 208-220
    • Gevrey, M.1    Rimet, F.2    Park, Y.-S.3    Giraudel, J.L.4    Ector, L.5    Lek, S.6
  • 41
    • 33746277781 scopus 로고    scopus 로고
    • Estimating risk of events using SOM models: a case study on invasive species establishment
    • Gevrey M., Worner S., Kasabov N., Pitt J., Giraudel J.-L. Estimating risk of events using SOM models: a case study on invasive species establishment. Ecol. Model. 2006, 127:361-372.
    • (2006) Ecol. Model. , vol.127 , pp. 361-372
    • Gevrey, M.1    Worner, S.2    Kasabov, N.3    Pitt, J.4    Giraudel, J.-L.5
  • 42
    • 58849092857 scopus 로고    scopus 로고
    • An unsupervised context-sensitive change detection technique based on modified self-organizing feature map neural network
    • Ghosh S., Patra S., Ghosh A. An unsupervised context-sensitive change detection technique based on modified self-organizing feature map neural network. In. J. Appoximate Reasoning 2009, 50:37-50.
    • (2009) In. J. Appoximate Reasoning , vol.50 , pp. 37-50
    • Ghosh, S.1    Patra, S.2    Ghosh, A.3
  • 43
    • 0002681317 scopus 로고    scopus 로고
    • Application of the self-organizing mapping and fuzzy clustering to microsatellite data: how to detect genetic structure in brown trout (Salmo trutta) populations
    • Springer-Verlag, Berlin, S. Lek, J.F. Guégan (Eds.)
    • Giraudel J.L., Aurelle D., Berrebi P., Lek S. Application of the self-organizing mapping and fuzzy clustering to microsatellite data: how to detect genetic structure in brown trout (Salmo trutta) populations. Artificial Neuronal Networks, Application to Ecology and Evolution 2000, 187-202. Springer-Verlag, Berlin. S. Lek, J.F. Guégan (Eds.).
    • (2000) Artificial Neuronal Networks, Application to Ecology and Evolution , pp. 187-202
    • Giraudel, J.L.1    Aurelle, D.2    Berrebi, P.3    Lek, S.4
  • 44
    • 0009252948 scopus 로고    scopus 로고
    • A sensitivity analysis of the self organizing map as an adaptive one-pass non-stationary clustering algorithm: the case of color quantization of image sequences
    • Gonzalez A.I., Graña M., Anjou A.D., Albizuri F.X. A sensitivity analysis of the self organizing map as an adaptive one-pass non-stationary clustering algorithm: the case of color quantization of image sequences. Neural Process. LeETT. 1997, 6:77-89.
    • (1997) Neural Process. LeETT. , vol.6 , pp. 77-89
    • Gonzalez, A.I.1    Graña, M.2    Anjou, A.D.3    Albizuri, F.X.4
  • 45
    • 0025142609 scopus 로고
    • Self-organization of neurons described by the maximum-entropy principle
    • Grabec I. Self-organization of neurons described by the maximum-entropy principle. Biol. Cybern. 1990, 63:403-409.
    • (1990) Biol. Cybern. , vol.63 , pp. 403-409
    • Grabec, I.1
  • 46
    • 31544436299 scopus 로고    scopus 로고
    • The use of Markovian metapopulation models: reducing the dimensionality of transition matrices by self-organizing Kohonen networks
    • Griebeler E., Seitz A. The use of Markovian metapopulation models: reducing the dimensionality of transition matrices by self-organizing Kohonen networks. Ecol. Model. 2006, 192:271-285.
    • (2006) Ecol. Model. , vol.192 , pp. 271-285
    • Griebeler, E.1    Seitz, A.2
  • 47
    • 0018861680 scopus 로고
    • How does a brain build a cognitive code?
    • Grossberg S. How does a brain build a cognitive code?. Psychol. Rev. 1980, 87:1-51.
    • (1980) Psychol. Rev. , vol.87 , pp. 1-51
    • Grossberg, S.1
  • 48
    • 67349096676 scopus 로고    scopus 로고
    • Multi-objective genetic local search algorithm using Kohonen's neural map
    • Hakimi-Asiabar M., Ghodsypour S., Kerachian R. Multi-objective genetic local search algorithm using Kohonen's neural map. Comput. Ind. Eng. 2009, 56:1566-1576.
    • (2009) Comput. Ind. Eng. , vol.56 , pp. 1566-1576
    • Hakimi-Asiabar, M.1    Ghodsypour, S.2    Kerachian, R.3
  • 52
    • 0020118274 scopus 로고
    • Neural networks and physical systems with emergent collective computational abilities
    • Hopfield J. Neural networks and physical systems with emergent collective computational abilities. PNAS 1982, 9:2554.
    • (1982) PNAS , vol.9 , pp. 2554
    • Hopfield, J.1
  • 53
    • 74149092556 scopus 로고    scopus 로고
    • Clustering spatial-temporal precipitation data using wavelet transform and self-organizing map neural network
    • Hsu K.-C., Li S.-T. Clustering spatial-temporal precipitation data using wavelet transform and self-organizing map neural network. Adv. Water Res. 2010, 33:190-200.
    • (2010) Adv. Water Res. , vol.33 , pp. 190-200
    • Hsu, K.-C.1    Li, S.-T.2
  • 54
    • 25444522205 scopus 로고    scopus 로고
    • Using an artificial neural network to patternize long-term fisheries data from South Korea
    • Hyun K., Song M.-Y., Kim S., Chon T.-S. Using an artificial neural network to patternize long-term fisheries data from South Korea. Aquat. Sci. 2005, 67:382-389.
    • (2005) Aquat. Sci. , vol.67 , pp. 382-389
    • Hyun, K.1    Song, M.-Y.2    Kim, S.3    Chon, T.-S.4
  • 55
    • 56449083401 scopus 로고    scopus 로고
    • Structure of aquatic insect communities in tank-bromeliads in a East-Amazonian rainforest in French Guiana
    • Jabiol J., Corbara B., Dejean A., Cereghino R. Structure of aquatic insect communities in tank-bromeliads in a East-Amazonian rainforest in French Guiana. For. Ecol. Manage. 2009, 257:351-360.
    • (2009) For. Ecol. Manage. , vol.257 , pp. 351-360
    • Jabiol, J.1    Corbara, B.2    Dejean, A.3    Cereghino, R.4
  • 56
    • 77954761127 scopus 로고    scopus 로고
    • Stream modification patterns in a river basin: field survey and self-organizing map (SOM) application
    • Jeong K.-S., Hong D.-G., Byeon M.-S., Jeong J.-C., Kim H.-G., Kim D.-K., Joo G.-J. Stream modification patterns in a river basin: field survey and self-organizing map (SOM) application. Ecol. Inform. 2010, 5:293-303.
    • (2010) Ecol. Inform. , vol.5 , pp. 293-303
    • Jeong, K.-S.1    Hong, D.-G.2    Byeon, M.-S.3    Jeong, J.-C.4    Kim, H.-G.5    Kim, D.-K.6    Joo, G.-J.7
  • 57
    • 34547663401 scopus 로고    scopus 로고
    • Monitoring of movement behaviors of chironomid larvae after exposure to diazinon using fractal dimension and self-organizing map
    • Ji C.W., Choi K.H., Lee S.H., Park Y.-S., Chon T.-S. Monitoring of movement behaviors of chironomid larvae after exposure to diazinon using fractal dimension and self-organizing map. Int. J. Ecodyn. 2007, 2:1-12.
    • (2007) Int. J. Ecodyn. , vol.2 , pp. 1-12
    • Ji, C.W.1    Choi, K.H.2    Lee, S.H.3    Park, Y.-S.4    Chon, T.-S.5
  • 58
    • 2442719356 scopus 로고    scopus 로고
    • Expanding self-organizing map for data visualization and cluster analysis
    • Jin H., Shum W.H., Leung K.S., Wong M.L. Expanding self-organizing map for data visualization and cluster analysis. Inf. Sci. 2004, 163:157-173.
    • (2004) Inf. Sci. , vol.163 , pp. 157-173
    • Jin, H.1    Shum, W.H.2    Leung, K.S.3    Wong, M.L.4
  • 59
    • 0028598969 scopus 로고
    • Self-organizing maps: local competition and evolutionary optimization
    • Jockusch S., Ritter H. Self-organizing maps: local competition and evolutionary optimization. Neural Netw. 1994, 7:1229-1239.
    • (1994) Neural Netw. , vol.7 , pp. 1229-1239
    • Jockusch, S.1    Ritter, H.2
  • 60
    • 84895387892 scopus 로고    scopus 로고
    • Modelling community changes of cyanobacteria in a flow regulated river (the lower Nakdong River, S. Korea) by means of a Self-Organizing Map (SOM)
    • Springer Verlag, Berlin, S. Lek, M. Scardi, P. Verdonschot, J.P. Descy, Y.S. Park (Eds.)
    • Joo G.J., Jeong K.S. Modelling community changes of cyanobacteria in a flow regulated river (the lower Nakdong River, S. Korea) by means of a Self-Organizing Map (SOM). Modelling Community Changes of Cyanobacteria in a Flow Regulated River (the Lower Nakdong River, S. Korea) by Means of a Self-Organizing Map (SOM) 2005, 273-287. Springer Verlag, Berlin. S. Lek, M. Scardi, P. Verdonschot, J.P. Descy, Y.S. Park (Eds.).
    • (2005) Modelling Community Changes of Cyanobacteria in a Flow Regulated River (the Lower Nakdong River, S. Korea) by Means of a Self-Organizing Map (SOM) , pp. 273-287
    • Joo, G.J.1    Jeong, K.S.2
  • 61
    • 0027037770 scopus 로고
    • Exery and ecology
    • Jørgensen S.V. Exery and ecology. Ecol. Model. 1992, 63:185-214.
    • (1992) Ecol. Model. , vol.63 , pp. 185-214
    • Jørgensen, S.V.1
  • 62
    • 0344826094 scopus 로고    scopus 로고
    • Period detection and representation by recurrent oscillatory self-organizing map
    • Kaipainen M., Ilmonen T. Period detection and representation by recurrent oscillatory self-organizing map. Neurocomputing 2003, 55:699-710.
    • (2003) Neurocomputing , vol.55 , pp. 699-710
    • Kaipainen, M.1    Ilmonen, T.2
  • 63
    • 40749144865 scopus 로고    scopus 로고
    • Review of the self-organizing map (SOM) approach in water resources: analysis, modeling and application
    • Kalteh A.M., Hjorth P., Berndtsson R. Review of the self-organizing map (SOM) approach in water resources: analysis, modeling and application. Environ. Modell. Softw. 2008, 23:835-845.
    • (2008) Environ. Modell. Softw. , vol.23 , pp. 835-845
    • Kalteh, A.M.1    Hjorth, P.2    Berndtsson, R.3
  • 64
    • 34047192394 scopus 로고    scopus 로고
    • Patterning long-term changes of fish community in large shallow Lake Peipsi
    • Kangur K., Park Y.-S., Kangur A., Kangur P., Lek S. Patterning long-term changes of fish community in large shallow Lake Peipsi. Ecol. Model. 2007, 203:34-44.
    • (2007) Ecol. Model. , vol.203 , pp. 34-44
    • Kangur, K.1    Park, Y.-S.2    Kangur, A.3    Kangur, P.4    Lek, S.5
  • 65
    • 0001272054 scopus 로고    scopus 로고
    • Bibliography of self-organizing map (SOM) papers: 1981-1997
    • Kaski S., Kangas J., Kohonen T. Bibliography of self-organizing map (SOM) papers: 1981-1997. Neural Comput. Surv. 1998, 1:102-350.
    • (1998) Neural Comput. Surv. , vol.1 , pp. 102-350
    • Kaski, S.1    Kangas, J.2    Kohonen, T.3
  • 66
    • 36549037067 scopus 로고    scopus 로고
    • Implementation of artificial neural networks (ANNs) to analysis of inter-taxa communities of benthic microorganisms and macroinvertebrates in a polluted stream
    • Kim B., Lee S.-E., Song M.-Y., Choi J.-H., Ahn S.-M., Lee K.-S., Cho E., Chon T.-S., Koh S.-C. Implementation of artificial neural networks (ANNs) to analysis of inter-taxa communities of benthic microorganisms and macroinvertebrates in a polluted stream. Sci. Total Environ. 2008, 390:262-274.
    • (2008) Sci. Total Environ. , vol.390 , pp. 262-274
    • Kim, B.1    Lee, S.-E.2    Song, M.-Y.3    Choi, J.-H.4    Ahn, S.-M.5    Lee, K.-S.6    Cho, E.7    Chon, T.-S.8    Koh, S.-C.9
  • 67
    • 70449528324 scopus 로고    scopus 로고
    • Investigation of self-organizing map for genetic algorithm
    • Kita E., Kan S., Fei Z. Investigation of self-organizing map for genetic algorithm. Adv. Eng. Softw. 2010, 41:148-153.
    • (2010) Adv. Eng. Softw. , vol.41 , pp. 148-153
    • Kita, E.1    Kan, S.2    Fei, Z.3
  • 68
    • 0020068152 scopus 로고
    • Self-organized formation of topologically correct feature maps
    • Kohonen T. Self-organized formation of topologically correct feature maps. Biol. Cybern. 1982, 43:59-69.
    • (1982) Biol. Cybern. , vol.43 , pp. 59-69
    • Kohonen, T.1
  • 69
    • 0019991550 scopus 로고
    • Analysis of a simple self-organizing process
    • Kohonen T. Analysis of a simple self-organizing process. Biol. Cybern. 1982, 44:135-140.
    • (1982) Biol. Cybern. , vol.44 , pp. 135-140
    • Kohonen, T.1
  • 70
    • 0027806867 scopus 로고
    • Physiological interpretation of the self-organizing map algorithm
    • Kohonen T. Physiological interpretation of the self-organizing map algorithm. Neural Netw. Oxford. 1993, 6:895-895.
    • (1993) Neural Netw. Oxford. , vol.6 , pp. 895-895
    • Kohonen, T.1
  • 72
    • 0000761101 scopus 로고    scopus 로고
    • Self-organized formation of various invariantfeature filters in the adaptive-subspace SOM
    • Kohonen T., Kaski S., Lappalainen H. Self-organized formation of various invariantfeature filters in the adaptive-subspace SOM. Neural Comput. 1997, 9:1321-1344.
    • (1997) Neural Comput. , vol.9 , pp. 1321-1344
    • Kohonen, T.1    Kaski, S.2    Lappalainen, H.3
  • 75
    • 0031721959 scopus 로고    scopus 로고
    • A neural network approach to the analysis of city systems
    • Kropp J. A neural network approach to the analysis of city systems. Appl. Geogr. 1998, 18:83-96.
    • (1998) Appl. Geogr. , vol.18 , pp. 83-96
    • Kropp, J.1
  • 77
    • 38549179349 scopus 로고    scopus 로고
    • Extracting a diagnostic gait signature
    • Lakany H. Extracting a diagnostic gait signature. Pattern Recogn. 2008, 41:1627-1637.
    • (2008) Pattern Recogn. , vol.41 , pp. 1627-1637
    • Lakany, H.1
  • 78
    • 0001153915 scopus 로고
    • Clustering properties of hierarchical self-organizing maps
    • Lampinen J., Oja E. Clustering properties of hierarchical self-organizing maps. J. Math. Imaging Vis. 1992, 2:261-272.
    • (1992) J. Math. Imaging Vis. , vol.2 , pp. 261-272
    • Lampinen, J.1    Oja, E.2
  • 79
    • 34548522922 scopus 로고    scopus 로고
    • Patterns in fish assemblages in the Loire floodplain: the role of hydrological connectivity and implications for conservation
    • Lasne E., Lek S., Laffaille P. Patterns in fish assemblages in the Loire floodplain: the role of hydrological connectivity and implications for conservation. Biol. Conserv. 2007, 139:258-268.
    • (2007) Biol. Conserv. , vol.139 , pp. 258-268
    • Lasne, E.1    Lek, S.2    Laffaille, P.3
  • 80
    • 32644466855 scopus 로고    scopus 로고
    • Multivariate analysis and self-organizing mapping applied to analysis of nest-site selection in Black-tailed Gulls
    • Lee W.-S., Kwon Y.-S., Yoo J.-C., Song M.-Y., Chon T.-S. Multivariate analysis and self-organizing mapping applied to analysis of nest-site selection in Black-tailed Gulls. Ecol. Model. 2006, 193:602-614.
    • (2006) Ecol. Model. , vol.193 , pp. 602-614
    • Lee, W.-S.1    Kwon, Y.-S.2    Yoo, J.-C.3    Song, M.-Y.4    Chon, T.-S.5
  • 81
    • 34047276123 scopus 로고    scopus 로고
    • Classification of breeding bird communities along an urbanization gradient using an unsupervised artificial neural network
    • Lee J., Kwak I.-S., Lee E., Kim K.A. Classification of breeding bird communities along an urbanization gradient using an unsupervised artificial neural network. Ecol. Model. 2007, 203:62-71.
    • (2007) Ecol. Model. , vol.203 , pp. 62-71
    • Lee, J.1    Kwak, I.-S.2    Lee, E.3    Kim, K.A.4
  • 82
    • 33750144620 scopus 로고    scopus 로고
    • Evaluation of environmental factors to predict breeding success of black-tailed gulls
    • Lee W.-S., Kwon Y.-S., Park Y.-S., Chon T.-S., Yoo J.-C. Evaluation of environmental factors to predict breeding success of black-tailed gulls. Ecol. Inform. 2007, 1:331-339.
    • (2007) Ecol. Inform. , vol.1 , pp. 331-339
    • Lee, W.-S.1    Kwon, Y.-S.2    Park, Y.-S.3    Chon, T.-S.4    Yoo, J.-C.5
  • 83
    • 77649188651 scopus 로고    scopus 로고
    • Patterning habitat preference of avifaunal assemblage on the Nakdong River estuary (South Korea) using self-organizing map
    • Lee C.-W., Jang J., Jeong K., Kim D., Joo G. Patterning habitat preference of avifaunal assemblage on the Nakdong River estuary (South Korea) using self-organizing map. Ecol. Inform. 2009, 5:89-96.
    • (2009) Ecol. Inform. , vol.5 , pp. 89-96
    • Lee, C.-W.1    Jang, J.2    Jeong, K.3    Kim, D.4    Joo, G.5
  • 86
    • 34147190728 scopus 로고    scopus 로고
    • Collembolan communities in a peat bog versus surrounding forest analyzed by using self-organizing map
    • Lek-Ang S., Park Y., Ait-Mouloud S., Deharveng L. Collembolan communities in a peat bog versus surrounding forest analyzed by using self-organizing map. Ecol. Model. 2007, 203:9-17.
    • (2007) Ecol. Model. , vol.203 , pp. 9-17
    • Lek-Ang, S.1    Park, Y.2    Ait-Mouloud, S.3    Deharveng, L.4
  • 87
    • 0022554672 scopus 로고
    • A behavioral assay for assessing effects of pollutants on fish chemoreception
    • Lemly A.D., Smith R.J.F. A behavioral assay for assessing effects of pollutants on fish chemoreception. Ecotox. Environ. Saf. 1986, 11:210-218.
    • (1986) Ecotox. Environ. Saf. , vol.11 , pp. 210-218
    • Lemly, A.D.1    Smith, R.J.F.2
  • 88
    • 34047215524 scopus 로고    scopus 로고
    • Macroinvertebrate assemblages in glacial stream systems: a comparison of linear multivariate methods with artificial neural networks
    • Lencioni V., Maiolini B., Marziali L., Lek S., Rossaro B. Macroinvertebrate assemblages in glacial stream systems: a comparison of linear multivariate methods with artificial neural networks. Ecol. Model. 2007, 203:119-131.
    • (2007) Ecol. Model. , vol.203 , pp. 119-131
    • Lencioni, V.1    Maiolini, B.2    Marziali, L.3    Lek, S.4    Rossaro, B.5
  • 89
    • 34447638892 scopus 로고    scopus 로고
    • Concerning the differentiability of the energy function in vector quantization algorithms
    • Lepetz D., Némoz-Gaillard M., Aupetit M. Concerning the differentiability of the energy function in vector quantization algorithms. Neural Netw. 2007, 20:621-630.
    • (2007) Neural Netw. , vol.20 , pp. 621-630
    • Lepetz, D.1    Némoz-Gaillard, M.2    Aupetit, M.3
  • 90
    • 69349084510 scopus 로고    scopus 로고
    • A hybrid neural network model for typhoon-rainfall forecasting
    • Lin G., Wu M. A hybrid neural network model for typhoon-rainfall forecasting. J. Hydrol. 2009, 375:450-458.
    • (2009) J. Hydrol. , vol.375 , pp. 450-458
    • Lin, G.1    Wu, M.2
  • 91
    • 0026043412 scopus 로고
    • On the rate of convergence in topology preserving neural networks
    • Lo Z.-P., Bavarian B. On the rate of convergence in topology preserving neural networks. Biol. Cybern. 1991, 65:55-63.
    • (1991) Biol. Cybern. , vol.65 , pp. 55-63
    • Lo, Z.-P.1    Bavarian, B.2
  • 92
    • 0035986515 scopus 로고    scopus 로고
    • Diagnosing reservoir water quality using self-organizing maps and fuzzy theory
    • Lu R.-S., Lo S.-L. Diagnosing reservoir water quality using self-organizing maps and fuzzy theory. Water Res. 2002, 36:2265-2274.
    • (2002) Water Res. , vol.36 , pp. 2265-2274
    • Lu, R.-S.1    Lo, S.-L.2
  • 93
    • 0030572617 scopus 로고    scopus 로고
    • A comparison of som neural network and hierarchical clustering methods
    • Mangiameli P., Chen S.W., West D. A comparison of som neural network and hierarchical clustering methods. Eur. J. Oper. Res. 1996, 93:402-417.
    • (1996) Eur. J. Oper. Res. , vol.93 , pp. 402-417
    • Mangiameli, P.1    Chen, S.W.2    West, D.3
  • 94
    • 34548700142 scopus 로고    scopus 로고
    • Extracting knowledge on the links between the water body stressors and biotic integrity
    • Manolakos E., Virani H., Novotny V. Extracting knowledge on the links between the water body stressors and biotic integrity. Water Res. 2007, 41:4041-4050.
    • (2007) Water Res. , vol.41 , pp. 4041-4050
    • Manolakos, E.1    Virani, H.2    Novotny, V.3
  • 95
    • 0036789790 scopus 로고    scopus 로고
    • A self-organizing neural network that grows when required
    • Marsland S., Shapiro J., Nehmzow U. A self-organizing neural network that grows when required. Neural Netw. 2002, 15:1041-1058.
    • (2002) Neural Netw. , vol.15 , pp. 1041-1058
    • Marsland, S.1    Shapiro, J.2    Nehmzow, U.3
  • 96
    • 42149188306 scopus 로고    scopus 로고
    • Application of self-organizing maps for assessing soil biological quality
    • Mele P., Crowley D. Application of self-organizing maps for assessing soil biological quality. Agric. Ecosyst. Environ. 2008, 126:139-152.
    • (2008) Agric. Ecosyst. Environ. , vol.126 , pp. 139-152
    • Mele, P.1    Crowley, D.2
  • 98
    • 33847327423 scopus 로고    scopus 로고
    • SOMPLS: A supervised self-organising map-partial least squares algorithm for multivariate regression problems. 86
    • Melssen, W., Ustün, B., Buydens, L., 2007. SOMPLS: A supervised self-organising map-partial least squares algorithm for multivariate regression problems. 86, 102-120.
    • (2007) , pp. 102-120
    • Melssen, W.1    Ustün, B.2    Buydens, L.3
  • 99
    • 79651471560 scopus 로고
    • Dynamic externalities and industrial location. Brown University mimeo.
    • Mitra, A., 1994. Dynamic externalities and industrial location. Brown University mimeo.
    • (1994)
    • Mitra, A.1
  • 100
    • 67651017532 scopus 로고    scopus 로고
    • Linking diatom community structure to pesticide input as evaluated through a spatial contamination potential (Phytopixal): a case study in the Neste river system (South-West France)
    • Morin S., Bottin M., Mazzella N., Macary F., Delmas F., Winterton P., Coste M. Linking diatom community structure to pesticide input as evaluated through a spatial contamination potential (Phytopixal): a case study in the Neste river system (South-West France). Aquat. Toxicol. 2009, 94:28-39.
    • (2009) Aquat. Toxicol. , vol.94 , pp. 28-39
    • Morin, S.1    Bottin, M.2    Mazzella, N.3    Macary, F.4    Delmas, F.5    Winterton, P.6    Coste, M.7
  • 101
    • 20444470294 scopus 로고    scopus 로고
    • Plant disease detection based on data fusion of hyper-spectral and multi-spectral fluorescence imaging using Kohonen maps
    • Moshou D., Bravo C., Oberti R., West J., Bodria L., McCartney A., Ramon H. Plant disease detection based on data fusion of hyper-spectral and multi-spectral fluorescence imaging using Kohonen maps. Real-Time Imaging 2005, 11:75-83.
    • (2005) Real-Time Imaging , vol.11 , pp. 75-83
    • Moshou, D.1    Bravo, C.2    Oberti, R.3    West, J.4    Bodria, L.5    McCartney, A.6    Ramon, H.7
  • 102
    • 67349244320 scopus 로고    scopus 로고
    • Shades of green: a psychographic segmentation of the green consumer in Kuwait using self-organizing maps
    • Mostafa M.M. Shades of green: a psychographic segmentation of the green consumer in Kuwait using self-organizing maps. Expert Syst. Appl. 2009, 36:11030-11038.
    • (2009) Expert Syst. Appl. , vol.36 , pp. 11030-11038
    • Mostafa, M.M.1
  • 103
    • 70349254645 scopus 로고    scopus 로고
    • What do artificial neural networks tell us about the genetic structure of populations? The example of European pig populations
    • Nikolic N., Park Y.-S., Sancristobal M., Lek S., Chevalet C. What do artificial neural networks tell us about the genetic structure of populations? The example of European pig populations. Genet. Res. Camb. 2009, 91:121-132.
    • (2009) Genet. Res. Camb. , vol.91 , pp. 121-132
    • Nikolic, N.1    Park, Y.-S.2    Sancristobal, M.3    Lek, S.4    Chevalet, C.5
  • 104
    • 33846576949 scopus 로고    scopus 로고
    • Identification of typical synoptic patterns causing heavy rainfall in the rainy season in Japan by a Self-Organizing Map
    • Nishiyama K., Endo S., Jinno K., Bertacchi Uvo C., Olsson J., Berndtsson R. Identification of typical synoptic patterns causing heavy rainfall in the rainy season in Japan by a Self-Organizing Map. Atmos. Res. 2007, 83:185-200.
    • (2007) Atmos. Res. , vol.83 , pp. 185-200
    • Nishiyama, K.1    Endo, S.2    Jinno, K.3    Bertacchi Uvo, C.4    Olsson, J.5    Berndtsson, R.6
  • 105
    • 0035677666 scopus 로고    scopus 로고
    • Modelling population dynamics of aquatic insects with artificial neural networks
    • Obach M., Wagner R., Werner H., Schmidt H. Modelling population dynamics of aquatic insects with artificial neural networks. Ecol. Model. 2001, 146:207-217.
    • (2001) Ecol. Model. , vol.146 , pp. 207-217
    • Obach, M.1    Wagner, R.2    Werner, H.3    Schmidt, H.4
  • 108
    • 34047223140 scopus 로고    scopus 로고
    • Community patterning and identification of predominant factors in algal bloom in Daechung Reservoir (Korea) using artificial neural networks
    • Oh H.-M., Ahn C.-Y., Lee J.-W., Chon T.-S., Choi K.H., Park Y.-S. Community patterning and identification of predominant factors in algal bloom in Daechung Reservoir (Korea) using artificial neural networks. Ecol. Model. 2007, 203:109-118.
    • (2007) Ecol. Model. , vol.203 , pp. 109-118
    • Oh, H.-M.1    Ahn, C.-Y.2    Lee, J.-W.3    Chon, T.-S.4    Choi, K.H.5    Park, Y.-S.6
  • 109
    • 0033105068 scopus 로고    scopus 로고
    • An antificial neural network approach to spatial habitat modeling with interspecific interaction
    • Özesmi S.L., Özesmi U. An antificial neural network approach to spatial habitat modeling with interspecific interaction. Ecol. Model. 1999, 116:15-31.
    • (1999) Ecol. Model. , vol.116 , pp. 15-31
    • Özesmi, S.L.1    Özesmi, U.2
  • 110
    • 77951188109 scopus 로고    scopus 로고
    • Using a self-organizing map to predict invasive species: sensitivity to data errors and a comparison with expert opinion
    • Paini D.R., Worner S.P., Cook D.C., De Barro P.J., Thomas M.B. Using a self-organizing map to predict invasive species: sensitivity to data errors and a comparison with expert opinion. J. Appl. Ecol. 2010, 47:290-298.
    • (2010) J. Appl. Ecol. , vol.47 , pp. 290-298
    • Paini, D.R.1    Worner, S.P.2    Cook, D.C.3    De Barro, P.J.4    Thomas, M.B.5
  • 111
    • 0033237161 scopus 로고    scopus 로고
    • An evolutionary system for recognition and tracking of synoptic-scale storm systems
    • Parikh J., DaPonte J., Vitale J., Tselioudis G. An evolutionary system for recognition and tracking of synoptic-scale storm systems. Pattern Recognit. Lett. 1999, 20:1389-1396.
    • (1999) Pattern Recognit. Lett. , vol.20 , pp. 1389-1396
    • Parikh, J.1    DaPonte, J.2    Vitale, J.3    Tselioudis, G.4
  • 112
    • 31544458715 scopus 로고    scopus 로고
    • Hazard rating of pine trees from a forest insect pest using artificial neural networks
    • Park Y.-S., Chung Y.-J. Hazard rating of pine trees from a forest insect pest using artificial neural networks. For. Ecol. Manage. 2006, 222:222-233.
    • (2006) For. Ecol. Manage. , vol.222 , pp. 222-233
    • Park, Y.-S.1    Chung, Y.-J.2
  • 113
    • 0346735385 scopus 로고    scopus 로고
    • Conservation strategies for endemic fish species threatened by the Three Goges Dam
    • Park Y.-S., Cang J., Sovan L., Cao W., Brosse S. Conservation strategies for endemic fish species threatened by the Three Goges Dam. Conserv. Biol. 2003, 17:1748-1785.
    • (2003) Conserv. Biol. , vol.17 , pp. 1748-1785
    • Park, Y.-S.1    Cang, J.2    Sovan, L.3    Cao, W.4    Brosse, S.5
  • 114
    • 0037442528 scopus 로고    scopus 로고
    • Applications of artificial neural networks for patterning and predictiong aquatic insect species richness in running waters
    • Park Y.-S., Céréghino R., Compin A., Lek S. Applications of artificial neural networks for patterning and predictiong aquatic insect species richness in running waters. Ecol. Model. 2003, 160:265-280.
    • (2003) Ecol. Model. , vol.160 , pp. 265-280
    • Park, Y.-S.1    Céréghino, R.2    Compin, A.3    Lek, S.4
  • 115
    • 2542545752 scopus 로고    scopus 로고
    • Hierarchical community classification and assessment of aquatic ecosystems using artificial neural networks
    • Park Y.-S., Chon T.-S., Kwak I.-S., Lek S.-H. Hierarchical community classification and assessment of aquatic ecosystems using artificial neural networks. Sci. Total Environ. 2004, 327:105-122.
    • (2004) Sci. Total Environ. , vol.327 , pp. 105-122
    • Park, Y.-S.1    Chon, T.-S.2    Kwak, I.-S.3    Lek, S.-H.4
  • 116
    • 12844280626 scopus 로고    scopus 로고
    • Computational characterization of behavioral response of medaka (Oryzias latipes) treated with diazinon
    • Park Y.-S., Chung N.-I., Choi K.-H., Cha E.Y., Lee S.-K., Chon T.-S. Computational characterization of behavioral response of medaka (Oryzias latipes) treated with diazinon. Aquat. Toxicol. 2005, 71:215-228.
    • (2005) Aquat. Toxicol. , vol.71 , pp. 215-228
    • Park, Y.-S.1    Chung, N.-I.2    Choi, K.-H.3    Cha, E.Y.4    Lee, S.-K.5    Chon, T.-S.6
  • 117
    • 33646130152 scopus 로고    scopus 로고
    • Patterning exergy of benthic macroinvertebrate communities using self-organizing maps
    • Park Y.-S., Lek S., Scardi M., Verdonschot P.F.M., Jørgensen S.E. Patterning exergy of benthic macroinvertebrate communities using self-organizing maps. Ecol. Model. 2006, 195:105-113.
    • (2006) Ecol. Model. , vol.195 , pp. 105-113
    • Park, Y.-S.1    Lek, S.2    Scardi, M.3    Verdonschot, P.F.M.4    Jørgensen, S.E.5
  • 118
    • 33750999595 scopus 로고    scopus 로고
    • Application of a self-organizing map to select representative species in multivariate analysis: a case study determining diatom distribution patterns across France
    • Park Y.-S., Tison J., Lek S., Giraudel J.-L., Coste M., Delmas F. Application of a self-organizing map to select representative species in multivariate analysis: a case study determining diatom distribution patterns across France. Ecol. Inform. 2006, 3:247-257.
    • (2006) Ecol. Inform. , vol.3 , pp. 247-257
    • Park, Y.-S.1    Tison, J.2    Lek, S.3    Giraudel, J.-L.4    Coste, M.5    Delmas, F.6
  • 119
    • 34047213520 scopus 로고    scopus 로고
    • Community patterns of benthic macroinvertebrates collected on the national scale in Korea
    • Park Y.-S., Song M.-Y., Park Y.-C., Oh K.-H., Cho E., Chon T.-S. Community patterns of benthic macroinvertebrates collected on the national scale in Korea. Ecol. Model. 2007, 203:26-33.
    • (2007) Ecol. Model. , vol.203 , pp. 26-33
    • Park, Y.-S.1    Song, M.-Y.2    Park, Y.-C.3    Oh, K.-H.4    Cho, E.5    Chon, T.-S.6
  • 121
    • 84895397760 scopus 로고    scopus 로고
    • Patterning spatial variation in fish assemblage structures and diversity in the Pilica River system using a self-organizing map (SOM)
    • Springer-Verlag, Berlin, Y.S. Park, S. Lek (Eds.)
    • Penczak T., Kruk A., Park Y.-S., Lek S. Patterning spatial variation in fish assemblage structures and diversity in the Pilica River system using a self-organizing map (SOM). Modelling Community Structure in Freshwater Ecosystems 2005, 100-113. Springer-Verlag, Berlin. Y.S. Park, S. Lek (Eds.).
    • (2005) Modelling Community Structure in Freshwater Ecosystems , pp. 100-113
    • Penczak, T.1    Kruk, A.2    Park, Y.-S.3    Lek, S.4
  • 122
    • 33845320454 scopus 로고    scopus 로고
    • Patterning of impoundment impact on chironomid assemblages and their environment with use of the self-organizing map (SOM)
    • Penczak T., Kruk A., Grzybkowska M., Dukowska M. Patterning of impoundment impact on chironomid assemblages and their environment with use of the self-organizing map (SOM). Acta Oecol. 2006, 30:312-321.
    • (2006) Acta Oecol. , vol.30 , pp. 312-321
    • Penczak, T.1    Kruk, A.2    Grzybkowska, M.3    Dukowska, M.4
  • 123
    • 77950367472 scopus 로고    scopus 로고
    • Mapping patterns of multiple deprivation using self-organising maps: an application to EU-SILC data for Ireland
    • Pisati M., Whelan C., Lucchini M., Maitre B. Mapping patterns of multiple deprivation using self-organising maps: an application to EU-SILC data for Ireland. Soc. Sci. Res. 2009, 29:405-418.
    • (2009) Soc. Sci. Res. , vol.29 , pp. 405-418
    • Pisati, M.1    Whelan, C.2    Lucchini, M.3    Maitre, B.4
  • 126
    • 33646851953 scopus 로고    scopus 로고
    • Unravelling and forecasting algal population dynamics in two lakes different in morphometry and eutrophication by neural and evolutionary computation
    • Recknagel F., Cao H., Kim B., Takamura N., Welk A. Unravelling and forecasting algal population dynamics in two lakes different in morphometry and eutrophication by neural and evolutionary computation. Ecol. Inform. 2006, 1:133-151.
    • (2006) Ecol. Inform. , vol.1 , pp. 133-151
    • Recknagel, F.1    Cao, H.2    Kim, B.3    Takamura, N.4    Welk, A.5
  • 127
    • 33750146381 scopus 로고    scopus 로고
    • Phytoplankton community dynamics of two adjacent Dutch lakes in response to seasons and eutrophication control unravelled by non-supervised artificial neural networks
    • Recknagel F., Talib A., Van den Molen D. Phytoplankton community dynamics of two adjacent Dutch lakes in response to seasons and eutrophication control unravelled by non-supervised artificial neural networks. Ecol. Inform. 2006, 1:277-285.
    • (2006) Ecol. Inform. , vol.1 , pp. 277-285
    • Recknagel, F.1    Talib, A.2    Van den Molen, D.3
  • 128
    • 0037707302 scopus 로고    scopus 로고
    • Adaptive double self-organizing maps for clustering gene expression profiles
    • Ressom H., Wang D., Natrarajan P. Adaptive double self-organizing maps for clustering gene expression profiles. Neural Netw. 2003, 16:633-640.
    • (2003) Neural Netw. , vol.16 , pp. 633-640
    • Ressom, H.1    Wang, D.2    Natrarajan, P.3
  • 129
    • 77954959625 scopus 로고    scopus 로고
    • Nonlinear climatology and paleoclimatology: capturing patterns of variability and change with Self-Organizing Maps
    • Reusch D. Nonlinear climatology and paleoclimatology: capturing patterns of variability and change with Self-Organizing Maps. Phys. Chem. Earth 2010, 35:329-340.
    • (2010) Phys. Chem. Earth , vol.35 , pp. 329-340
    • Reusch, D.1
  • 130
    • 1542321528 scopus 로고    scopus 로고
    • Shillington Using self-organizing maps to identify patterns in satellite imagery
    • Richardson A.J., Risien C., Shillington Using self-organizing maps to identify patterns in satellite imagery. Prog. Oceanogr. 2003, 223-239.
    • (2003) Prog. Oceanogr. , pp. 223-239
    • Richardson, A.J.1    Risien, C.2
  • 131
    • 67349136529 scopus 로고    scopus 로고
    • Exploring the dynamics of plankton diatom communities in Lake Geneva using emergent self-organizing maps (1974-2007)
    • Rimet F., Druart J., Anneville O. Exploring the dynamics of plankton diatom communities in Lake Geneva using emergent self-organizing maps (1974-2007). Ecol. Inform. 2009, 4:99-110.
    • (2009) Ecol. Inform. , vol.4 , pp. 99-110
    • Rimet, F.1    Druart, J.2    Anneville, O.3
  • 132
    • 0000913674 scopus 로고
    • Topology conserving mappings for learning motor tasks
    • J.S. Denker (Ed.)
    • Ritter H., Schulten K. Topology conserving mappings for learning motor tasks. Neural networks for computing, AIP Conf. Proc. 1986, 151:376-380. J.S. Denker (Ed.).
    • (1986) Neural networks for computing, AIP Conf. Proc. , vol.151 , pp. 376-380
    • Ritter, H.1    Schulten, K.2
  • 133
    • 34250092740 scopus 로고
    • Convergency properties of Kohonen's topology conserving maps: fluctuations, stability and dimension selection
    • Ritter H., Schulten K. Convergency properties of Kohonen's topology conserving maps: fluctuations, stability and dimension selection. Biol. Cybern. 1988, 60:59-71.
    • (1988) Biol. Cybern. , vol.60 , pp. 59-71
    • Ritter, H.1    Schulten, K.2
  • 135
    • 33746619647 scopus 로고    scopus 로고
    • Understanding and reducing variability of SOM neighbourhood structure
    • Rousset P., Guinot C., Maillet B. Understanding and reducing variability of SOM neighbourhood structure. Neural Netw. 2006, 19:838-846.
    • (2006) Neural Netw. , vol.19 , pp. 838-846
    • Rousset, P.1    Guinot, C.2    Maillet, B.3
  • 136
    • 33947694761 scopus 로고    scopus 로고
    • ISSR-PCR: Tool for discrimination and genetic structure analysis of Plutella xylostella populations native to different geographical areas
    • Roux O., Gevrey M., Arvanitakis L., Gers C., Bordat D., Legal L. ISSR-PCR: Tool for discrimination and genetic structure analysis of Plutella xylostella populations native to different geographical areas. Mol. Phylogen. Evolut. 2007, 43:240-250.
    • (2007) Mol. Phylogen. Evolut. , vol.43 , pp. 240-250
    • Roux, O.1    Gevrey, M.2    Arvanitakis, L.3    Gers, C.4    Bordat, D.5    Legal, L.6
  • 137
    • 40849137558 scopus 로고    scopus 로고
    • Farm ponds make a contribution to the biodiversity of aquatic insects in a French agricultural landscape
    • Ruggiero A., Cereghino R., Figuerola J., Marty P., Angelibert S. Farm ponds make a contribution to the biodiversity of aquatic insects in a French agricultural landscape. CR Biol. 2008, 331:298-308.
    • (2008) CR Biol. , vol.331 , pp. 298-308
    • Ruggiero, A.1    Cereghino, R.2    Figuerola, J.3    Marty, P.4    Angelibert, S.5
  • 140
    • 0029662837 scopus 로고    scopus 로고
    • Artificial neural networks as empirical models for estimating phytoplankton production
    • Scardi M. Artificial neural networks as empirical models for estimating phytoplankton production. Mar. Ecol. Prog. Ser. 1996, 139:289-299.
    • (1996) Mar. Ecol. Prog. Ser. , vol.139 , pp. 289-299
    • Scardi, M.1
  • 141
    • 33744980453 scopus 로고    scopus 로고
    • Self-organising map methods in integrated modeling of environmental and economic systems
    • Shanmuganathan S., Sallis P., Buckeridge J. Self-organising map methods in integrated modeling of environmental and economic systems. Environ. Model. Softw. 2006, 21:1247-1256.
    • (2006) Environ. Model. Softw. , vol.21 , pp. 1247-1256
    • Shanmuganathan, S.1    Sallis, P.2    Buckeridge, J.3
  • 142
    • 32444443169 scopus 로고    scopus 로고
    • Self-organizing map visualizing conditional quantile functions with multidimensional covariates
    • Similä T. Self-organizing map visualizing conditional quantile functions with multidimensional covariates. Comput. Stat. Data Anal. 2006, 50:2097-2110.
    • (2006) Comput. Stat. Data Anal. , vol.50 , pp. 2097-2110
    • Similä, T.1
  • 143
    • 34249733276 scopus 로고    scopus 로고
    • Forecasting the CATS benchmark with the Double Vector Quantization method
    • Simon G., Lee J., Cottrell M., Verleysen M. Forecasting the CATS benchmark with the Double Vector Quantization method. Neurocomputing 2007, 70:2400-2409.
    • (2007) Neurocomputing , vol.70 , pp. 2400-2409
    • Simon, G.1    Lee, J.2    Cottrell, M.3    Verleysen, M.4
  • 144
    • 36248929403 scopus 로고    scopus 로고
    • Recurrent Self-Organizing Map implemented to detection of temporal line-movement patterns of Lumbriculus variegates (Oligochaeta: Lumbriculidae) in response to the treatments of heavy metal
    • WIT Press
    • Son K.-H., Ji Y.-M., Park Y.-M., Cui Y., Wang H.Z., Chon T.-S., Cha E.Y. Recurrent Self-Organizing Map implemented to detection of temporal line-movement patterns of Lumbriculus variegates (Oligochaeta: Lumbriculidae) in response to the treatments of heavy metal. Transaction on Biomedicine and Health Vol 10 Environemtal Toxicology. Southanpton 2006, 77-91. WIT Press.
    • (2006) Transaction on Biomedicine and Health Vol 10 Environemtal Toxicology. Southanpton , pp. 77-91
    • Son, K.-H.1    Ji, Y.-M.2    Park, Y.-M.3    Cui, Y.4    Wang, H.Z.5    Chon, T.-S.6    Cha, E.Y.7
  • 145
    • 36549024240 scopus 로고    scopus 로고
    • Comparative community analysis of benthic macroinvertebrates and microorganisms across different levels of organic pollution in a stream by using artificial neural networks
    • Song M.-Y., Lee S.-E., Park J., Park J., Kim B., Koh S., Lee K., Park Y.-S., Chon T.-S. Comparative community analysis of benthic macroinvertebrates and microorganisms across different levels of organic pollution in a stream by using artificial neural networks. WSEAS Ttrans. Biol. Biomed. 2005, 3:257-268.
    • (2005) WSEAS Ttrans. Biol. Biomed. , vol.3 , pp. 257-268
    • Song, M.-Y.1    Lee, S.-E.2    Park, J.3    Park, J.4    Kim, B.5    Koh, S.6    Lee, K.7    Park, Y.-S.8    Chon, T.-S.9
  • 146
    • 33750144353 scopus 로고    scopus 로고
    • Characterization of benthic macroinvertebrate communities in a restored stream by using self-organizing map
    • Song M.-Y., Park Y.-S., Kwak I.-S., Woo H., Chon T.-S. Characterization of benthic macroinvertebrate communities in a restored stream by using self-organizing map. Ecol. Inform. 2006, 1:295-305.
    • (2006) Ecol. Inform. , vol.1 , pp. 295-305
    • Song, M.-Y.1    Park, Y.-S.2    Kwak, I.-S.3    Woo, H.4    Chon, T.-S.5
  • 147
    • 34047206999 scopus 로고    scopus 로고
    • Self-organizing mapping of benthic macroinvertebrate communities implemented to community assessment and water quality evaluation
    • Song M.-Y., Hwang H.-J., Kwak I.-S., Ji C.-W., Oh Y.-N., Youn B.-J., Chon T.-S. Self-organizing mapping of benthic macroinvertebrate communities implemented to community assessment and water quality evaluation. Ecol. Model. 2007, 203:18-25.
    • (2007) Ecol. Model. , vol.203 , pp. 18-25
    • Song, M.-Y.1    Hwang, H.-J.2    Kwak, I.-S.3    Ji, C.-W.4    Oh, Y.-N.5    Youn, B.-J.6    Chon, T.-S.7
  • 148
    • 77955056967 scopus 로고    scopus 로고
    • Conscious worst case definition for risk assessment, part II A methodological case study for pesticide risk assessment
    • Sørensen P.B., Giralt F., Rallo R., Espinosa G., Münier B., Gylenkærne S., Thomsen M. Conscious worst case definition for risk assessment, part II A methodological case study for pesticide risk assessment. Sci. Total Environ. 2010, 208:3860-3870.
    • (2010) Sci. Total Environ. , vol.208 , pp. 3860-3870
    • Sørensen, P.B.1    Giralt, F.2    Rallo, R.3    Espinosa, G.4    Münier, B.5    Gylenkærne, S.6    Thomsen, M.7
  • 149
    • 84986845449 scopus 로고
    • Ecoscale: a scale for the measurement of environmentally responsible consumers
    • Stone G., Barnes J., Montgomery C. Ecoscale: a scale for the measurement of environmentally responsible consumers. Psychol. Market. 1995, 12:595-612.
    • (1995) Psychol. Market. , vol.12 , pp. 595-612
    • Stone, G.1    Barnes, J.2    Montgomery, C.3
  • 150
    • 15844418774 scopus 로고    scopus 로고
    • Merge SOM for temporal data
    • Strickert M., Hammer B. Merge SOM for temporal data. Neurocomputing 2005, 64:39-71.
    • (2005) Neurocomputing , vol.64 , pp. 39-71
    • Strickert, M.1    Hammer, B.2
  • 151
    • 12144281716 scopus 로고    scopus 로고
    • Unsupervised recursive sequences processing
    • Strickert M., Hammer B., Blohm S. Unsupervised recursive sequences processing. Neurocomputing 2005, 63:69-98.
    • (2005) Neurocomputing , vol.63 , pp. 69-98
    • Strickert, M.1    Hammer, B.2    Blohm, S.3
  • 152
    • 0035501730 scopus 로고    scopus 로고
    • Pattern classification using multiple hierarchical overlapped self-organizing maps
    • Suganthan P. Pattern classification using multiple hierarchical overlapped self-organizing maps. Pattern Recognit. 2001, 34:2173-2179.
    • (2001) Pattern Recognit. , vol.34 , pp. 2173-2179
    • Suganthan, P.1
  • 153
    • 23744499663 scopus 로고    scopus 로고
    • Typology of diatom communities and the influence of hydro-ecoregions: a study on the French hydrosystem scale
    • Tison J., Park Y.-S., Coste M., Wasson J.G., Ector L., Rimet F., Delmas F. Typology of diatom communities and the influence of hydro-ecoregions: a study on the French hydrosystem scale. Water Res. 2005, 39:3177-3188.
    • (2005) Water Res. , vol.39 , pp. 3177-3188
    • Tison, J.1    Park, Y.-S.2    Coste, M.3    Wasson, J.G.4    Ector, L.5    Rimet, F.6    Delmas, F.7
  • 154
    • 34147112172 scopus 로고    scopus 로고
    • Predicting diatom reference communities at the French hydrosystem scale: a first step towards the definition of the good ecological status
    • Tison J., Park Y.-S., Coste M., Wasson J.G., Rimet F., Ector L., Delmas F. Predicting diatom reference communities at the French hydrosystem scale: a first step towards the definition of the good ecological status. Ecol. Model. 2007, 203:99-108.
    • (2007) Ecol. Model. , vol.203 , pp. 99-108
    • Tison, J.1    Park, Y.-S.2    Coste, M.3    Wasson, J.G.4    Rimet, F.5    Ector, L.6    Delmas, F.7
  • 156
    • 0025608647 scopus 로고
    • An analysis of Kohonen's self-organizing maps using a system of energy functions
    • Tolat V.V. An analysis of Kohonen's self-organizing maps using a system of energy functions. Biol. Cybern. 1990, 64:155-164.
    • (1990) Biol. Cybern. , vol.64 , pp. 155-164
    • Tolat, V.V.1
  • 157
    • 0042190285 scopus 로고    scopus 로고
    • Self-organizing maps for integrated environmental assessment of the Mid-Atlantic Region
    • Tran L.T., Knight C.G., O'Neill R.V., Smith E.R., O'Connell M. Self-organizing maps for integrated environmental assessment of the Mid-Atlantic Region. Environ. Manage. 2003, 31:822-835.
    • (2003) Environ. Manage. , vol.31 , pp. 822-835
    • Tran, L.T.1    Knight, C.G.2    O'Neill, R.V.3    Smith, E.R.4    O'Connell, M.5
  • 158
    • 67349127543 scopus 로고    scopus 로고
    • Influence of dam removal on trichopteran assemblages in the lowland Drzewiczka River, Poland
    • Tszydel M., Grzybkowska M., Kruk A. Influence of dam removal on trichopteran assemblages in the lowland Drzewiczka River, Poland. Hydrobiology 2009, 630:75-89.
    • (2009) Hydrobiology , vol.630 , pp. 75-89
    • Tszydel, M.1    Grzybkowska, M.2    Kruk, A.3
  • 159
    • 0002535204 scopus 로고
    • Self-organizing neural networks for visualization and classification
    • Berlin, Springer-Verlag, O. Opitz, B. Lausen, R. Klar (Eds.)
    • Ultsch A. Self-organizing neural networks for visualization and classification. Information and Classification 1993, 307-313. Berlin, Springer-Verlag. O. Opitz, B. Lausen, R. Klar (Eds.).
    • (1993) Information and Classification , pp. 307-313
    • Ultsch, A.1
  • 160
    • 77649237781 scopus 로고    scopus 로고
    • Experimental comparison of recursive self-organizing maps for processing tree-structured data
    • Vančo P., Farkaš I. Experimental comparison of recursive self-organizing maps for processing tree-structured data. Neurocomputing 2010, 73:1362-1375.
    • (2010) Neurocomputing , vol.73 , pp. 1362-1375
    • Vančo, P.1    Farkaš, I.2
  • 161
    • 38049168357 scopus 로고    scopus 로고
    • SOM-based data visualization methods
    • Vesanto J. SOM-based data visualization methods. Intell. Data Analsis 1999, 3:111-126.
    • (1999) Intell. Data Analsis , vol.3 , pp. 111-126
    • Vesanto, J.1
  • 163
    • 0344541989 scopus 로고    scopus 로고
    • Applications of the growing self-organizing map1
    • Villmann T., Bauer H.U. Applications of the growing self-organizing map1. Neurocomputing 1998, 21:91-100.
    • (1998) Neurocomputing , vol.21 , pp. 91-100
    • Villmann, T.1    Bauer, H.U.2
  • 164
    • 0033720875 scopus 로고    scopus 로고
    • Context quantization and contextual self-organizing maps
    • Voegtlin T. Context quantization and contextual self-organizing maps. Proc. Int. Joint Conf. on Neural Networks 2000, 5:20-25.
    • (2000) Proc. Int. Joint Conf. on Neural Networks , vol.5 , pp. 20-25
    • Voegtlin, T.1
  • 165
    • 0034863267 scopus 로고    scopus 로고
    • Learning high-degree sequences in a linear network
    • Voegtlin T., Dominey P. Learning high-degree sequences in a linear network. Proceedings of the IJCNN'2001 2001, 1:940-944.
    • (2001) Proceedings of the IJCNN'2001 , vol.1 , pp. 940-944
    • Voegtlin, T.1    Dominey, P.2
  • 166
    • 0035670049 scopus 로고    scopus 로고
    • Unsupervised pattern recognition for the interpretation of ecological data
    • Walley W.J., O'Connor M.A. Unsupervised pattern recognition for the interpretation of ecological data. Ecol. Model. 2001, 146:219-230.
    • (2001) Ecol. Model. , vol.146 , pp. 219-230
    • Walley, W.J.1    O'Connor, M.A.2
  • 167
    • 0346008041 scopus 로고    scopus 로고
    • Process design optimization using embedded hybrid visualization and data analysis technique within a genetic algorithm optimization framework
    • Wang K., Salhi A., Fraga E.S. Process design optimization using embedded hybrid visualization and data analysis technique within a genetic algorithm optimization framework. Chem. Eng. Process. 2004, 43:663-675.
    • (2004) Chem. Eng. Process. , vol.43 , pp. 663-675
    • Wang, K.1    Salhi, A.2    Fraga, E.S.3
  • 168
    • 84944178665 scopus 로고
    • Hierarchical grouping to optimize an objective function
    • Ward J.H. Hierarchical grouping to optimize an objective function. J. Am. Stat. Assoc. 1963, 58:236-244.
    • (1963) J. Am. Stat. Assoc. , vol.58 , pp. 236-244
    • Ward, J.H.1
  • 169
    • 23244445943 scopus 로고    scopus 로고
    • Deterministic projection by growing cell structure networks for visualization of high-dimensionality datasets
    • Wong J.W.H., Cartwright H.M. Deterministic projection by growing cell structure networks for visualization of high-dimensionality datasets. J. Biomed. Inform. 2005, 38:322-330.
    • (2005) J. Biomed. Inform. , vol.38 , pp. 322-330
    • Wong, J.W.H.1    Cartwright, H.M.2
  • 170
    • 34848841483 scopus 로고    scopus 로고
    • 3D head model retrieval in kernel feature space using HSOM
    • Wong H.-S., Yang Sha B.M., Ip H.H.S. 3D head model retrieval in kernel feature space using HSOM. Pattern Recognit. 2008, 41:468-483.
    • (2008) Pattern Recognit. , vol.41 , pp. 468-483
    • Wong, H.-S.1    Yang Sha, B.M.2    Ip, H.H.S.3
  • 171
    • 4744340884 scopus 로고    scopus 로고
    • Census of orthologous genes and self-organizing maps of biologically relevant transcriptional patterns in chickens (Gallus gallus)
    • Wu X.-L., Griffin K.B., Garcia M.D., Michal J.J., Xiao Q., Wright R.W., Jiang Z. Census of orthologous genes and self-organizing maps of biologically relevant transcriptional patterns in chickens (Gallus gallus). Gene 2004, 340:213-225.
    • (2004) Gene , vol.340 , pp. 213-225
    • Wu, X.-L.1    Griffin, K.B.2    Garcia, M.D.3    Michal, J.J.4    Xiao, Q.5    Wright, R.W.6    Jiang, Z.7
  • 172
    • 67349162631 scopus 로고    scopus 로고
    • Self-organizing map approaches for the haplotype assembly problem
    • Wu L.-Y., Li Z., Wang R.-S., Zhang X.-S., Chen L. Self-organizing map approaches for the haplotype assembly problem. Math. Comput. Simul 2009, 79:3026-3037.
    • (2009) Math. Comput. Simul , vol.79 , pp. 3026-3037
    • Wu, L.-Y.1    Li, Z.2    Wang, R.-S.3    Zhang, X.-S.4    Chen, L.5
  • 173
    • 47049096762 scopus 로고    scopus 로고
    • Land cover classification of the North China Plain using MODIS EVI time series
    • Xia Z., Rui S., Bing Z., Qingxi T. Land cover classification of the North China Plain using MODIS EVI time series. ISPRS J. Photogramm. 2008, 63:476-484.
    • (2008) ISPRS J. Photogramm. , vol.63 , pp. 476-484
    • Xia, Z.1    Rui, S.2    Bing, Z.3    Qingxi, T.4
  • 174
    • 15244350269 scopus 로고    scopus 로고
    • Using complexity measure factor to predict protein subcellular location
    • Xiao X., Shao S., Ding Y., Huang Z., Huang Y., Choum K.C. Using complexity measure factor to predict protein subcellular location. Amino Acids 2005, 28:57-61.
    • (2005) Amino Acids , vol.28 , pp. 57-61
    • Xiao, X.1    Shao, S.2    Ding, Y.3    Huang, Z.4    Huang, Y.5    Choum, K.C.6
  • 175
    • 74449088476 scopus 로고    scopus 로고
    • PolSOM: a new method for multidimensional data visualization
    • Xu K., Xu Y., Chow T.W.S. PolSOM: a new method for multidimensional data visualization. Pattern Recognit. 2010, 43:1668-1675.
    • (2010) Pattern Recognit. , vol.43 , pp. 1668-1675
    • Xu, K.1    Xu, Y.2    Chow, T.W.S.3
  • 176
    • 0036789789 scopus 로고    scopus 로고
    • Data visualization and manifold mapping using the ViSOM
    • Yin H. Data visualization and manifold mapping using the ViSOM. Neural Netw. 2002, 15:1005-1016.
    • (2002) Neural Netw. , vol.15 , pp. 1005-1016
    • Yin, H.1
  • 177
    • 40649084778 scopus 로고    scopus 로고
    • On multidimensional scaling and the embedding of self-organizing maps
    • Yin H. On multidimensional scaling and the embedding of self-organizing maps. Neural Netw. 2008, 21:160-169.
    • (2008) Neural Netw. , vol.21 , pp. 160-169
    • Yin, H.1
  • 178
    • 56549083648 scopus 로고    scopus 로고
    • A comparison of SOFM ordination with DCA and PCA in gradient analysis of plant communities in the midst of Taihang Mountains
    • Zhang J., Dong Y., Xi Y. A comparison of SOFM ordination with DCA and PCA in gradient analysis of plant communities in the midst of Taihang Mountains. China. Ecol. Inform. 2008, 3:367-374.
    • (2008) China. Ecol. Inform. , vol.3 , pp. 367-374
    • Zhang, J.1    Dong, Y.2    Xi, Y.3
  • 179
    • 54049116668 scopus 로고    scopus 로고
    • Assessment of the nutrient removal performance in integrated constructed wetlands with the self-organizing map
    • Zhang L., Scholz M., Mustafa A., Harrington R. Assessment of the nutrient removal performance in integrated constructed wetlands with the self-organizing map. Water Res. 2008, 42:3519-3527.
    • (2008) Water Res. , vol.42 , pp. 3519-3527
    • Zhang, L.1    Scholz, M.2    Mustafa, A.3    Harrington, R.4
  • 180
    • 53949087820 scopus 로고    scopus 로고
    • Application of the self-organizing map as a predition tool for an integrated constructed wetland agroecosystem treating agricultural runoff
    • Zhang L., Scholz M., Mustafa A., Harrington R. Application of the self-organizing map as a predition tool for an integrated constructed wetland agroecosystem treating agricultural runoff. Bioresour. Technol. 2009, 100:559-565.
    • (2009) Bioresour. Technol. , vol.100 , pp. 559-565
    • Zhang, L.1    Scholz, M.2    Mustafa, A.3    Harrington, R.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.