메뉴 건너뛰기




Volumn 1, Issue 3 SPEC. ISS., 2006, Pages 213-217

Ecological informatics as an advanced interdisciplinary interpretation of ecosystems

Author keywords

[No Author keywords available]

Indexed keywords


EID: 33750181522     PISSN: 15749541     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ecoinf.2006.02.007     Document Type: Editorial
Times cited : (16)

References (79)
  • 1
    • 0001578518 scopus 로고
    • A learning algorithm for Boltzmann machines
    • Ackley D.H., Hinton G.E., and Sejnowski T.J. A learning algorithm for Boltzmann machines. Cogn. Sci. 9 (1985) 147-169
    • (1985) Cogn. Sci. , vol.9 , pp. 147-169
    • Ackley, D.H.1    Hinton, G.E.2    Sejnowski, T.J.3
  • 2
    • 0029669055 scopus 로고    scopus 로고
    • Results of Bayesian methods depend on details of implementation: an example of estimating salmon escapement goals
    • Adkison M.D., and Peterman R.M. Results of Bayesian methods depend on details of implementation: an example of estimating salmon escapement goals. Fish. Res. 25 (1996) 155-170
    • (1996) Fish. Res. , vol.25 , pp. 155-170
    • Adkison, M.D.1    Peterman, R.M.2
  • 3
    • 84895394239 scopus 로고    scopus 로고
    • Predicting macro-fauna community types from environmental variables by means of support vector machines
    • Lek S., Scardi M., Verdonschot P., Descy J., and Park Y.-S. (Eds), Springer, Berlin
    • Akkermans W., Verdonschot P., Nijboer R., Goedhart P., and ter Braak C. Predicting macro-fauna community types from environmental variables by means of support vector machines. In: Lek S., Scardi M., Verdonschot P., Descy J., and Park Y.-S. (Eds). Modelling Community Structure in Freshwater Ecosystems (2005), Springer, Berlin 411-434
    • (2005) Modelling Community Structure in Freshwater Ecosystems , pp. 411-434
    • Akkermans, W.1    Verdonschot, P.2    Nijboer, R.3    Goedhart, P.4    ter Braak, C.5
  • 4
    • 0032055397 scopus 로고    scopus 로고
    • Cellular automata models for vegetation dynamics
    • Balzter H., Braun P.W., and Köhler W. Cellular automata models for vegetation dynamics. Ecol. Model. 107 (1998) 113-125
    • (1998) Ecol. Model. , vol.107 , pp. 113-125
    • Balzter, H.1    Braun, P.W.2    Köhler, W.3
  • 5
    • 0037084722 scopus 로고    scopus 로고
    • An improved cellular automaton model for simulating fire in a spatially heterogeneous savanna system
    • Berjak S.G., and Hearne J.W. An improved cellular automaton model for simulating fire in a spatially heterogeneous savanna system. Ecol. Model. 148 (2002) 133-151
    • (2002) Ecol. Model. , vol.148 , pp. 133-151
    • Berjak, S.G.1    Hearne, J.W.2
  • 7
    • 0035672574 scopus 로고    scopus 로고
    • Knowledge discovery for prediction and explanation of blue-green algal dynamics in lakes by evolutionary algorithms
    • Bobbin J., and Recknagel F. Knowledge discovery for prediction and explanation of blue-green algal dynamics in lakes by evolutionary algorithms. Ecol. Model. 146 (2001) 253-262
    • (2001) Ecol. Model. , vol.146 , pp. 253-262
    • Bobbin, J.1    Recknagel, F.2
  • 8
    • 31544448816 scopus 로고    scopus 로고
    • A fuzzy-constrained cellular automata model of forest insect infestations
    • Bone C., Dragicevic S., and Roberts A. A fuzzy-constrained cellular automata model of forest insect infestations. Ecol. Model. 192 (2006) 107-125
    • (2006) Ecol. Model. , vol.192 , pp. 107-125
    • Bone, C.1    Dragicevic, S.2    Roberts, A.3
  • 10
    • 0033304885 scopus 로고    scopus 로고
    • Impacts of atypical data on Bayesian inference and robust Bayesian approach in fisheries
    • Chen Y., and Fournier D. Impacts of atypical data on Bayesian inference and robust Bayesian approach in fisheries. Can. J. Fish. Aquat. Sci. 59 (1999) 1525-1533
    • (1999) Can. J. Fish. Aquat. Sci. , vol.59 , pp. 1525-1533
    • Chen, Y.1    Fournier, D.2
  • 11
    • 0030426363 scopus 로고    scopus 로고
    • Patternizing communities by using an artificial neural network
    • Chon T.-S., Park Y.-S., Moon K.H., and Cha E.Y. Patternizing communities by using an artificial neural network. Ecol. Model. 90 (1996) 69-78
    • (1996) Ecol. Model. , vol.90 , pp. 69-78
    • Chon, T.-S.1    Park, Y.-S.2    Moon, K.H.3    Cha, E.Y.4
  • 12
    • 0035673376 scopus 로고    scopus 로고
    • Patterning and short-term predictions of benthic macroinvertebrate community dynamics by using a recurrent artificial neural network
    • Chon T.-S., Kwak I.-S., Park Y.-S., Kim T.-H., and Kim Y. Patterning and short-term predictions of benthic macroinvertebrate community dynamics by using a recurrent artificial neural network. Ecol. Model. 146 (2001) 181-193
    • (2001) Ecol. Model. , vol.146 , pp. 181-193
    • Chon, T.-S.1    Kwak, I.-S.2    Park, Y.-S.3    Kim, T.-H.4    Kim, Y.5
  • 13
    • 0029661386 scopus 로고    scopus 로고
    • Viability of populations in a landscape
    • Darwen P.J., and Green D.G. Viability of populations in a landscape. Ecol. Model. 85 (1996) 165-171
    • (1996) Ecol. Model. , vol.85 , pp. 165-171
    • Darwen, P.J.1    Green, D.G.2
  • 14
    • 0037442548 scopus 로고    scopus 로고
    • Use of genetic algorithms to select input variables in decision tree models for the prediction of benthic macroinvertebrates
    • d'heygere T., Goethals P.L.M., and De Pauw N. Use of genetic algorithms to select input variables in decision tree models for the prediction of benthic macroinvertebrates. Ecol. Model. 160 (2003) 291-300
    • (2003) Ecol. Model. , vol.160 , pp. 291-300
    • d'heygere, T.1    Goethals, P.L.M.2    De Pauw, N.3
  • 15
    • 0344563494 scopus 로고    scopus 로고
    • Individual-based modeling of fishermen search behaviour with neural networks and reinforcement learning
    • Dreyfus-Leon M. Individual-based modeling of fishermen search behaviour with neural networks and reinforcement learning. Ecol. Model. 129 (1999) 287-297
    • (1999) Ecol. Model. , vol.129 , pp. 287-297
    • Dreyfus-Leon, M.1
  • 16
    • 31444451854 scopus 로고    scopus 로고
    • Modelling cooperation between fishermen with a cellular automaton. A framework for fishing effort spatial dynamics
    • Dreyfus-León M. Modelling cooperation between fishermen with a cellular automaton. A framework for fishing effort spatial dynamics. Ecol. Inform. 1 (2006) 101-105
    • (2006) Ecol. Inform. , vol.1 , pp. 101-105
    • Dreyfus-León, M.1
  • 17
    • 0035673377 scopus 로고    scopus 로고
    • Applications of symbolic machine learning to ecological modeling
    • Dzeroski S. Applications of symbolic machine learning to ecological modeling. Ecol. Model. 146 (2001) 263-273
    • (2001) Ecol. Model. , vol.146 , pp. 263-273
    • Dzeroski, S.1
  • 18
    • 0035389274 scopus 로고    scopus 로고
    • A domain-specific language for models of landscape dynamics
    • Fall A., and Fall J. A domain-specific language for models of landscape dynamics. Ecol. Model. 137 (2001) 1-21
    • (2001) Ecol. Model. , vol.137 , pp. 1-21
    • Fall, A.1    Fall, J.2
  • 19
    • 0842332874 scopus 로고    scopus 로고
    • Modelling forest-savanna mosaic dynamics in man-influenced environments: effects of fire, climate and soil heterogeneity
    • Favier C., Chave J., Fabing A., Schwartz D., and Dubois M.A. Modelling forest-savanna mosaic dynamics in man-influenced environments: effects of fire, climate and soil heterogeneity. Ecol. Model. 171 (2004) 85-102
    • (2004) Ecol. Model. , vol.171 , pp. 85-102
    • Favier, C.1    Chave, J.2    Fabing, A.3    Schwartz, D.4    Dubois, M.A.5
  • 20
    • 0018861680 scopus 로고
    • How does a brain build a cognitive code?
    • Grossberg S. How does a brain build a cognitive code?. Psychol. Rev. 87 (1980) 1-51
    • (1980) Psychol. Rev. , vol.87 , pp. 1-51
    • Grossberg, S.1
  • 21
    • 0344052657 scopus 로고    scopus 로고
    • Energy availability and habitat heterogeneity predict global riverine fish diversity
    • Guegan J.F., Lek S., and Oberdorff T. Energy availability and habitat heterogeneity predict global riverine fish diversity. Nature 391 (1998) 382-384
    • (1998) Nature , vol.391 , pp. 382-384
    • Guegan, J.F.1    Lek, S.2    Oberdorff, T.3
  • 22
    • 0031430463 scopus 로고    scopus 로고
    • A Bayesian interpretation of target strength data from the Grand Banks
    • Hammond T. A Bayesian interpretation of target strength data from the Grand Banks. Can. J. Fish. Aquat. Sci. 54 (1997) 2323-2333
    • (1997) Can. J. Fish. Aquat. Sci. , vol.54 , pp. 2323-2333
    • Hammond, T.1
  • 23
    • 0004063090 scopus 로고
    • Macmillian College Publishing Company, New York 696 pp.
    • Haykin S. Neural Networks (1994), Macmillian College Publishing Company, New York 696 pp.
    • (1994) Neural Networks
    • Haykin, S.1
  • 25
    • 0033738272 scopus 로고    scopus 로고
    • Application of statistical model selection criterion to the stock synthesis assessment program
    • Helu S.L., Sampson D.B., and Yin Y. Application of statistical model selection criterion to the stock synthesis assessment program. Can. J. Fish. Aquat. Sci. 57 (2000) 1784-1793
    • (2000) Can. J. Fish. Aquat. Sci. , vol.57 , pp. 1784-1793
    • Helu, S.L.1    Sampson, D.B.2    Yin, Y.3
  • 26
    • 0032454842 scopus 로고    scopus 로고
    • Standing on the shoulders of giants: learning from experience in fisheries
    • Hilborn R., and Liermann M. Standing on the shoulders of giants: learning from experience in fisheries. Rev. Fish Biol. Fish. 8 (1998) 273-283
    • (1998) Rev. Fish Biol. Fish. , vol.8 , pp. 273-283
    • Hilborn, R.1    Liermann, M.2
  • 28
    • 0020118274 scopus 로고
    • Neural networks and physical systems with emergent collective computational abilities
    • Hopfield J.J. Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. 79 (1982) 2554-2558
    • (1982) Proc. Natl. Acad. Sci. , vol.79 , pp. 2554-2558
    • Hopfield, J.J.1
  • 29
    • 24044510808 scopus 로고    scopus 로고
    • Modelling of carbon cycle and fire regime in an east Siberian larch forest
    • Ito A. Modelling of carbon cycle and fire regime in an east Siberian larch forest. Ecol. Model. 187 (2005) 121-139
    • (2005) Ecol. Model. , vol.187 , pp. 121-139
    • Ito, A.1
  • 30
    • 0028602641 scopus 로고
    • Modelling dieback phenomena in natural forests
    • Jeltsch F., and Wissel C. Modelling dieback phenomena in natural forests. Ecol. Model. 75-76 (1994) 111-121
    • (1994) Ecol. Model. , vol.75-76 , pp. 111-121
    • Jeltsch, F.1    Wissel, C.2
  • 31
    • 0030619791 scopus 로고    scopus 로고
    • A model for predicting forest fire spreading using cellular automata
    • Karafyllidis I., and Thanailakis A. A model for predicting forest fire spreading using cellular automata. Ecol. Model. 99 (1997) 87-97
    • (1997) Ecol. Model. , vol.99 , pp. 87-97
    • Karafyllidis, I.1    Thanailakis, A.2
  • 32
    • 0029730671 scopus 로고    scopus 로고
    • Bayesian fishery stock assessment and decision making using adaptive importance sampling
    • Kinas P.G. Bayesian fishery stock assessment and decision making using adaptive importance sampling. Can. J. Fish. Aquat. Sci. 53 (1996) 414-423
    • (1996) Can. J. Fish. Aquat. Sci. , vol.53 , pp. 414-423
    • Kinas, P.G.1
  • 33
    • 26444479778 scopus 로고
    • Optimization by simulated annealing
    • Kirkpatrick S., Gelatt C.D., and Vecchi M.P. Optimization by simulated annealing. Science 220 (1983) 671-679
    • (1983) Science , vol.220 , pp. 671-679
    • Kirkpatrick, S.1    Gelatt, C.D.2    Vecchi, M.P.3
  • 34
    • 0020068152 scopus 로고
    • Self-organized formation of topologically correct feature maps
    • Kohonen T. Self-organized formation of topologically correct feature maps. Biol. Cybern. 43 (1982) 59-69
    • (1982) Biol. Cybern. , vol.43 , pp. 59-69
    • Kohonen, T.1
  • 36
    • 85010160193 scopus 로고
    • Prediction of the catch of Japanese sardine larvae in Sagami Bay using a neural network
    • Komatsu T., Aoki I., Mitani I., and Ishii T. Prediction of the catch of Japanese sardine larvae in Sagami Bay using a neural network. Fish Sci. 60 (1994) 385-391
    • (1994) Fish Sci. , vol.60 , pp. 385-391
    • Komatsu, T.1    Aoki, I.2    Mitani, I.3    Ishii, T.4
  • 37
    • 0007476638 scopus 로고    scopus 로고
    • Accounting for model uncertainty in prediction of chlorophyll a in Lake Okeechobee
    • Lamon E.C., and Clyde M.A. Accounting for model uncertainty in prediction of chlorophyll a in Lake Okeechobee. J. Agric. Biol. Environ. Stat. 5 (2000) 297-322
    • (2000) J. Agric. Biol. Environ. Stat. , vol.5 , pp. 297-322
    • Lamon, E.C.1    Clyde, M.A.2
  • 38
    • 0344604541 scopus 로고    scopus 로고
    • Artificial neural networks as a tool in ecological modelling, an introduction
    • Lek S., and Guégan J.F. Artificial neural networks as a tool in ecological modelling, an introduction. Ecol. Model. 120 (1999) 65-73
    • (1999) Ecol. Model. , vol.120 , pp. 65-73
    • Lek, S.1    Guégan, J.F.2
  • 40
    • 0028994908 scopus 로고
    • Improved estimation, using neural networks, of the food consumption of fish populations
    • Lek S., Belaud A., Dimopoulos I., Lauga J., and Moreau J. Improved estimation, using neural networks, of the food consumption of fish populations. Mar. Freshw. Res. 46 (1995) 1229-1236
    • (1995) Mar. Freshw. Res. , vol.46 , pp. 1229-1236
    • Lek, S.1    Belaud, A.2    Dimopoulos, I.3    Lauga, J.4    Moreau, J.5
  • 41
    • 0029661447 scopus 로고    scopus 로고
    • Role of some environmental variables in trout abundance models using neural networks
    • Lek S., Belaud A., Baran P., Dimopoulos I., and Delacoste M. Role of some environmental variables in trout abundance models using neural networks. Aquat. Living Resour. 9 (1996) 23-29
    • (1996) Aquat. Living Resour. , vol.9 , pp. 23-29
    • Lek, S.1    Belaud, A.2    Baran, P.3    Dimopoulos, I.4    Delacoste, M.5
  • 42
  • 43
    • 84895298636 scopus 로고    scopus 로고
    • Lek S., Scardi M., Verdonschot P., Descy J., and Park Y.-S. (Eds), Springer, Berlin 518 pp.
    • In: Lek S., Scardi M., Verdonschot P., Descy J., and Park Y.-S. (Eds). Modelling Community Structure in Freshwater Ecosystems (2005), Springer, Berlin 518 pp.
    • (2005) Modelling Community Structure in Freshwater Ecosystems
  • 44
    • 0030713277 scopus 로고    scopus 로고
    • Weighted mean patch size: a robust index for quantifying landscape structure
    • Li B.-L., and Archer S. Weighted mean patch size: a robust index for quantifying landscape structure. Ecol. Model. 102 (1997) 353-361
    • (1997) Ecol. Model. , vol.102 , pp. 353-361
    • Li, B.-L.1    Archer, S.2
  • 45
    • 0023331258 scopus 로고
    • An introduction to computing with neural nets
    • (April)
    • Lippmann R.P. An introduction to computing with neural nets. IEEE ASSP Mag. (1987) 4-22 (April)
    • (1987) IEEE ASSP Mag. , pp. 4-22
    • Lippmann, R.P.1
  • 46
    • 0032906031 scopus 로고    scopus 로고
    • Bayesian phylogenetic inference via Markov chain Monte Carlo methods
    • Mau B., Newton M.A., and Larget B. Bayesian phylogenetic inference via Markov chain Monte Carlo methods. Biometrics 55 (1999) 1-12
    • (1999) Biometrics , vol.55 , pp. 1-12
    • Mau, B.1    Newton, M.A.2    Larget, B.3
  • 48
    • 51249194645 scopus 로고
    • A logical calculus of the ideas imminent in nervous activity
    • McCulloch W.S., and Pitts W. A logical calculus of the ideas imminent in nervous activity. Bull. Math. Biophys. 5 (1943) 115-133
    • (1943) Bull. Math. Biophys. , vol.5 , pp. 115-133
    • McCulloch, W.S.1    Pitts, W.2
  • 49
    • 0035674124 scopus 로고    scopus 로고
    • Variants of genetic programming for species distribution modelling-fitness sharing, partial functions, population evaluation
    • McKay R.I.B. Variants of genetic programming for species distribution modelling-fitness sharing, partial functions, population evaluation. Ecol. Model. 146 (2001) 231-241
    • (2001) Ecol. Model. , vol.146 , pp. 231-241
    • McKay, R.I.B.1
  • 51
    • 0004290881 scopus 로고
    • MIT Press, Cambridge, MA 258 pp.
    • Minsky M., and Papert S. Perceptrons (1969), MIT Press, Cambridge, MA 258 pp.
    • (1969) Perceptrons
    • Minsky, M.1    Papert, S.2
  • 52
    • 0035676247 scopus 로고    scopus 로고
    • Support vector machines for identifying organisms: a comparison with strongly partitioned radial basis function networks
    • Morris C.W., Autreta A., and Boddy L. Support vector machines for identifying organisms: a comparison with strongly partitioned radial basis function networks. Ecol. Model. 146 (2001) 57-67
    • (2001) Ecol. Model. , vol.146 , pp. 57-67
    • Morris, C.W.1    Autreta, A.2    Boddy, L.3
  • 53
    • 0033506899 scopus 로고    scopus 로고
    • Maximum reproductive rate of fish at low population sizes
    • Myers R.A., Bowen K.G., and Barrowman N.J. Maximum reproductive rate of fish at low population sizes. Can. J. Fish. Aquat. Sci. 56 (1999) 2404-2419
    • (1999) Can. J. Fish. Aquat. Sci. , vol.56 , pp. 2404-2419
    • Myers, R.A.1    Bowen, K.G.2    Barrowman, N.J.3
  • 54
    • 0035891835 scopus 로고    scopus 로고
    • The effect of climate change on tropical rainforest vegetation pattern
    • Ostendorf B., Hilbert D.W., and Hopkins M.S. The effect of climate change on tropical rainforest vegetation pattern. Ecol. Model. 145 (2001) 211-224
    • (2001) Ecol. Model. , vol.145 , pp. 211-224
    • Ostendorf, B.1    Hilbert, D.W.2    Hopkins, M.S.3
  • 55
    • 33750148974 scopus 로고    scopus 로고
    • User interface tool
    • Lek S., Scardi M., Verdonschot P., Descy J., and Park Y.-S. (Eds), Springer, Berlin
    • Park Y.-S., and Lek S. User interface tool. In: Lek S., Scardi M., Verdonschot P., Descy J., and Park Y.-S. (Eds). Modelling Community Structure in Freshwater Ecosystems (2005), Springer, Berlin 435-454
    • (2005) Modelling Community Structure in Freshwater Ecosystems , pp. 435-454
    • Park, Y.-S.1    Lek, S.2
  • 56
    • 33750169210 scopus 로고    scopus 로고
    • Review of modelling techniques
    • Lek S., Scardi M., Verdonschot P., Descy J., and Park Y.-S. (Eds), Springer, Berlin
    • Park Y.-S., Verdonshot P.F.M., and Lek S. Review of modelling techniques. In: Lek S., Scardi M., Verdonschot P., Descy J., and Park Y.-S. (Eds). Modelling Community Structure in Freshwater Ecosystems (2005), Springer, Berlin 21-40
    • (2005) Modelling Community Structure in Freshwater Ecosystems , pp. 21-40
    • Park, Y.-S.1    Verdonshot, P.F.M.2    Lek, S.3
  • 57
    • 0028993626 scopus 로고
    • Spatial and environmental components of fresh-water zooplankton structure
    • Pinelalloul B., Niyonsenga T., and Legendre P. Spatial and environmental components of fresh-water zooplankton structure. Ecoscience 2 (1995) 1-19
    • (1995) Ecoscience , vol.2 , pp. 1-19
    • Pinelalloul, B.1    Niyonsenga, T.2    Legendre, P.3
  • 58
    • 0034130068 scopus 로고    scopus 로고
    • Univariate Bayesian nonparametric binary regression with application in environmental management
    • Qian S.S., Lavine M., and Stow C.A. Univariate Bayesian nonparametric binary regression with application in environmental management. Environ. Ecol. Stat. 7 (2000) 77-91
    • (2000) Environ. Ecol. Stat. , vol.7 , pp. 77-91
    • Qian, S.S.1    Lavine, M.2    Stow, C.A.3
  • 59
    • 0035676249 scopus 로고    scopus 로고
    • Applications of machine learning to ecological modeling
    • Recknagel F. Applications of machine learning to ecological modeling. Ecol. Model. 146 (2001) 303-310
    • (2001) Ecol. Model. , vol.146 , pp. 303-310
    • Recknagel, F.1
  • 61
    • 0030619529 scopus 로고    scopus 로고
    • Artificial neural network approach for modelling and prediction of algal blooms
    • Recknagel F., French M., Harkonen P., and Yabunaka K.-I. Artificial neural network approach for modelling and prediction of algal blooms. Ecol. Model. 96 (1997) 11-28
    • (1997) Ecol. Model. , vol.96 , pp. 11-28
    • Recknagel, F.1    French, M.2    Harkonen, P.3    Yabunaka, K.-I.4
  • 62
    • 0346591063 scopus 로고    scopus 로고
    • Comparative application of artificial neural networks and genetic algorithms for multivariate time-series modelling of algal blooms in freshwater lakes
    • Recknagel F., Bobbin J., Whigham P., and Wilson H. Comparative application of artificial neural networks and genetic algorithms for multivariate time-series modelling of algal blooms in freshwater lakes. J. Hydroinform. 4 (2002) 125-134
    • (2002) J. Hydroinform. , vol.4 , pp. 125-134
    • Recknagel, F.1    Bobbin, J.2    Whigham, P.3    Wilson, H.4
  • 63
    • 26444616680 scopus 로고    scopus 로고
    • Use of artificial intelligence (MIR-max) and chemical index to define type diatom assemblages in Rhône basin and Mediterranean region
    • Lek S., Scardi M., Verdonschot P., Descy J., and Park Y.-S. (Eds), Springer, Berlin
    • Rimet F., Cauchie H.M., Tudesque L., and Ector L. Use of artificial intelligence (MIR-max) and chemical index to define type diatom assemblages in Rhône basin and Mediterranean region. In: Lek S., Scardi M., Verdonschot P., Descy J., and Park Y.-S. (Eds). Modelling Community Structure in Freshwater Ecosystems (2005), Springer, Berlin 288-303
    • (2005) Modelling Community Structure in Freshwater Ecosystems , pp. 288-303
    • Rimet, F.1    Cauchie, H.M.2    Tudesque, L.3    Ector, L.4
  • 64
    • 11144273669 scopus 로고
    • The perceptron: a probabilistic model for information storage and organization in the brain
    • Rosenblatt F. The perceptron: a probabilistic model for information storage and organization in the brain. Psychol. Rev. 65 (1958) 386-408
    • (1958) Psychol. Rev. , vol.65 , pp. 386-408
    • Rosenblatt, F.1
  • 66
    • 0029662837 scopus 로고    scopus 로고
    • Artificial neural networks as empirical models of phytoplankton production
    • Scardi M. Artificial neural networks as empirical models of phytoplankton production. Mar. Ecol., Prog. Ser. 139 (1996) 289-299
    • (1996) Mar. Ecol., Prog. Ser. , vol.139 , pp. 289-299
    • Scardi, M.1
  • 67
    • 0030132783 scopus 로고    scopus 로고
    • Bayesian model for fate and transport of polychlorinated biphenyl in upper Hudson River
    • Steinberg L.J., Reckhow K.H., and Wolpert R.L. Bayesian model for fate and transport of polychlorinated biphenyl in upper Hudson River. J. Environ. Eng. 122 (1996) 341-349
    • (1996) J. Environ. Eng. , vol.122 , pp. 341-349
    • Steinberg, L.J.1    Reckhow, K.H.2    Wolpert, R.L.3
  • 68
    • 31944434076 scopus 로고    scopus 로고
    • The use of genetic algorithms and Bayesian classification to model species distributions
    • Termansen M., McClean C.J., and Preston C.D. The use of genetic algorithms and Bayesian classification to model species distributions. Ecol. Model. 192 (2006) 410-424
    • (2006) Ecol. Model. , vol.192 , pp. 410-424
    • Termansen, M.1    McClean, C.J.2    Preston, C.D.3
  • 69
    • 0031432577 scopus 로고    scopus 로고
    • Bayesian decision analysis for environmental and resource management
    • Varis O. Bayesian decision analysis for environmental and resource management. Environ. Model. Softw. Env. Data News 12 (1997) 177-185
    • (1997) Environ. Model. Softw. Env. Data News , vol.12 , pp. 177-185
    • Varis, O.1
  • 70
    • 0033734719 scopus 로고    scopus 로고
    • A Bayesian multinomial Gaussian response model for organism-based environmental reconstruction
    • Vasko K., Toivonen H.T.T., and Korhola A. A Bayesian multinomial Gaussian response model for organism-based environmental reconstruction. J. Paleolimnol. 24 (2000) 43-250
    • (2000) J. Paleolimnol. , vol.24 , pp. 43-250
    • Vasko, K.1    Toivonen, H.T.T.2    Korhola, A.3
  • 71
    • 4944222904 scopus 로고    scopus 로고
    • Biological monitoring: a comparison between Bayesian, neural and machine learning methods of water quality classification
    • Chapman and Hall, London
    • Walley W.J., and Dzeroski S. Biological monitoring: a comparison between Bayesian, neural and machine learning methods of water quality classification. Environmental Software Systems (1996), Chapman and Hall, London 229-240
    • (1996) Environmental Software Systems , pp. 229-240
    • Walley, W.J.1    Dzeroski, S.2
  • 72
    • 0001352082 scopus 로고    scopus 로고
    • New approaches to river quality classification based upon artificial intelligence
    • Furse M.T., and Wright J.F. (Eds), Freshwater Biological Association, Ambleside, UK
    • Walley W.J., and Fontama V.N. New approaches to river quality classification based upon artificial intelligence. In: Furse M.T., and Wright J.F. (Eds). Assessing the Biological Quality of Fresh Waters: RIVPACS and Other Techniques (2000), Freshwater Biological Association, Ambleside, UK 263-280
    • (2000) Assessing the Biological Quality of Fresh Waters: RIVPACS and Other Techniques , pp. 263-280
    • Walley, W.J.1    Fontama, V.N.2
  • 73
    • 0035670049 scopus 로고    scopus 로고
    • Unsupervised pattern recognition for the interpretation of ecological data
    • Walley W.J., and O'Connor M.A. Unsupervised pattern recognition for the interpretation of ecological data. Ecol. Model. 146 (2001) 219-230
    • (2001) Ecol. Model. , vol.146 , pp. 219-230
    • Walley, W.J.1    O'Connor, M.A.2
  • 75
    • 33750166134 scopus 로고    scopus 로고
    • Werbos, P.J., 1974. Beyond regression: new tools for prediction and analysis in the behavioral sciences. PhD thesis, Harvard University, Cambridge, MA.
  • 76
    • 0035673340 scopus 로고    scopus 로고
    • New neural network types estimating the accuracy of response for ecological modelling
    • Werner H., and Obach M. New neural network types estimating the accuracy of response for ecological modelling. Ecol. Model. 146 (2001) 289-298
    • (2001) Ecol. Model. , vol.146 , pp. 289-298
    • Werner, H.1    Obach, M.2
  • 77
    • 0035669859 scopus 로고    scopus 로고
    • Predicting chlorophyll-a in freshwater lakes by hybridising process-based models and genetic algorithms
    • Whigham P.A., and Recknagel F. Predicting chlorophyll-a in freshwater lakes by hybridising process-based models and genetic algorithms. Ecol. Model. 146 (2001) 243-251
    • (2001) Ecol. Model. , vol.146 , pp. 243-251
    • Whigham, P.A.1    Recknagel, F.2
  • 78
    • 0035669679 scopus 로고    scopus 로고
    • An inductive approach to ecological time series modelling by evolutionary computation
    • Whigham P.A., and Recknagel F. An inductive approach to ecological time series modelling by evolutionary computation. Ecol. Model. 146 (2001) 275-287
    • (2001) Ecol. Model. , vol.146 , pp. 275-287
    • Whigham, P.A.1    Recknagel, F.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.