메뉴 건너뛰기




Volumn 100, Issue 3, 2011, Pages 756-764

Molecular simulations of mutually exclusive folding in a two-domain protein switch

Author keywords

[No Author keywords available]

Indexed keywords


EID: 79551619424     PISSN: 00063495     EISSN: 15420086     Source Type: Journal    
DOI: 10.1016/j.bpj.2010.12.3710     Document Type: Article
Times cited : (10)

References (46)
  • 1
    • 0025010979 scopus 로고
    • The GTPase superfamily: A conserved switch for diverse cell functions
    • Bourne, H. R., D. A. Sanders, and F. McCormick. 1990. The GTPase superfamily: a conserved switch for diverse cell functions. Nature. 348:125-132.
    • (1990) Nature , vol.348 , pp. 125-132
    • Bourne, H.R.1    Sanders, D.A.2    McCormick, F.3
  • 2
    • 0037013143 scopus 로고    scopus 로고
    • The conformational plasticity of protein kinases
    • Huse, M., and J. Kuriyan. 2002. The conformational plasticity of protein kinases. Cell. 109:275-282.
    • (2002) Cell. , vol.109 , pp. 275-282
    • Huse, M.1    Kuriyan, J.2
  • 3
    • 70349770900 scopus 로고    scopus 로고
    • Generation of new protein functions by nonhomologous combinations and rearrangements of domains and modules
    • Koide, S. 2009. Generation of new protein functions by nonhomologous combinations and rearrangements of domains and modules. Curr. Opin. Biotechnol. 20:398-404.
    • (2009) Curr. Opin. Biotechnol. , vol.20 , pp. 398-404
    • Koide, S.1
  • 4
  • 5
  • 6
    • 0042736856 scopus 로고    scopus 로고
    • Allosteric switching by mutually exclusive folding of protein domains
    • Radley, T. L., A. I. Markowska, S. N. Loh. 2003. Allosteric switching by mutually exclusive folding of protein domains. J. Mol. Biol. 332:529-536.
    • (2003) J. Mol. Biol. , vol.332 , pp. 529-536
    • Radley, T.L.1    Markowska, A.I.2    Loh, S.N.3
  • 7
    • 34447273196 scopus 로고    scopus 로고
    • Thermodynamic analysis of an antagonistic folding-unfolding equilibrium between two protein domains
    • Cutler, T. A., and S. N. Loh. 2007. Thermodynamic analysis of an antagonistic folding-unfolding equilibrium between two protein domains. J. Mol. Biol. 371:308-316.
    • (2007) J. Mol. Biol. , vol.371 , pp. 308-316
    • Cutler, T.A.1    Loh, S.N.2
  • 8
    • 59649096956 scopus 로고    scopus 로고
    • Effect of interdomain linker length on an antagonistic folding-unfolding equilibrium between two protein domains
    • Cutler, T. A., B. M. Mills, S. N. Loh. 2009. Effect of interdomain linker length on an antagonistic folding-unfolding equilibrium between two protein domains. J. Mol. Biol. 386:854-868.
    • (2009) J. Mol. Biol. , vol.386 , pp. 854-868
    • Cutler, T.A.1    Mills, B.M.2    Loh, S.N.3
  • 9
    • 33644831449 scopus 로고    scopus 로고
    • Modular enzyme design: Regulation by mutually exclusive protein folding
    • Ha, J. H., J. S. Butler, S. N. Loh. 2006. Modular enzyme design: regulation by mutually exclusive protein folding. J. Mol. Biol. 357:1058-1062.
    • (2006) J. Mol. Biol. , vol.357 , pp. 1058-1062
    • Ha, J.H.1    Butler, J.S.2    Loh, S.N.3
  • 10
    • 34247465989 scopus 로고    scopus 로고
    • Engineering modular protein interaction switches by sequence overlap
    • Sallee, N. A., B. J. Yeh, and W. A. Lim. 2007. Engineering modular protein interaction switches by sequence overlap. J. Am. Chem. Soc. 129:4606-4611.
    • (2007) J. Am. Chem. Soc. , vol.129 , pp. 4606-4611
    • Sallee, N.A.1    Yeh, B.J.2    Lim, W.A.3
  • 11
    • 58149164666 scopus 로고    scopus 로고
    • 2+-sensing molecular switch based on alternate frame protein folding
    • 2+-sensing molecular switch based on alternate frame protein folding. ACS Chem. Biol. 3:723-732.
    • (2008) ACS Chem. Biol. , vol.3 , pp. 723-732
    • Stratton, M.M.1    Mitrea, D.M.2    Loh, S.N.3
  • 12
    • 49449118042 scopus 로고    scopus 로고
    • Light-activated DNA binding in a designed allosteric protein
    • Strickland, D., K. Moffat, and T. R. Sosnick. 2008. Light-activated DNA binding in a designed allosteric protein. Proc. Natl. Acad. Sci. USA. 105:10709-10714.
    • (2008) Proc. Natl. Acad. Sci. USA , vol.105 , pp. 10709-10714
    • Strickland, D.1    Moffat, K.2    Sosnick, T.R.3
  • 13
    • 77649241924 scopus 로고    scopus 로고
    • Engineering an artificial zymogen by alternate frame protein folding
    • Mitrea, D. M., L. S. Parsons, and S. N. Loh. 2010. Engineering an artificial zymogen by alternate frame protein folding. Proc. Natl. Acad. Sci. USA. 107:2824-2829.
    • (2010) Proc. Natl. Acad. Sci. USA , vol.107 , pp. 2824-2829
    • Mitrea, D.M.1    Parsons, L.S.2    Loh, S.N.3
  • 14
    • 78349276506 scopus 로고    scopus 로고
    • On the mechanism of protein fold-switching by a molecular sensor
    • Stratton, M. M., and S. N. Loh. 2010. On the mechanism of protein fold-switching by a molecular sensor. Proteins. 78:3260-3269.
    • (2010) Proteins , vol.78 , pp. 3260-3269
    • Stratton, M.M.1    Loh, S.N.2
  • 15
    • 0020972782 scopus 로고
    • Theoretical studies of protein folding
    • Go, N. 1983. Theoretical studies of protein folding. Annu. Rev. Biophys. Bioeng. 12:183-210.
    • (1983) Annu. Rev. Biophys. Bioeng. , vol.12 , pp. 183-210
    • Go, N.1
  • 16
    • 0032742688 scopus 로고    scopus 로고
    • Go-ing for the prediction of protein folding mechanisms
    • Takada, S. 1999. Go-ing for the prediction of protein folding mechanisms. Proc. Natl. Acad. Sci. USA. 96:11698-11700.
    • (1999) Proc. Natl. Acad. Sci. USA , vol.96 , pp. 11698-11700
    • Takada, S.1
  • 17
    • 39149100599 scopus 로고    scopus 로고
    • Coarse-grained models of protein folding: Toy models or predictive tools?
    • Clementi, C. 2008. Coarse-grained models of protein folding: toy models or predictive tools? Curr. Opin. Struct. Biol. 18:10-15.
    • (2008) Curr. Opin. Struct. Biol. , vol.18 , pp. 10-15
    • Clementi, C.1
  • 18
    • 0019944172 scopus 로고
    • Molecular structure of a new family of ribonucleases
    • Mauguen, Y., R. W. Hartley, A. Jack. 1982. Molecular structure of a new family of ribonucleases. Nature. 297:162-164.
    • (1982) Nature , vol.297 , pp. 162-164
    • Mauguen, Y.1    Hartley, R.W.2    Jack, A.3
  • 19
    • 0023644679 scopus 로고
    • Structure of ubiquitin refined at 1.8 Å resolution
    • Vijay-Kumar, S., C. E. Bugg, and W. J. Cook. 1987. Structure of ubiquitin refined at 1.8 Å resolution. J. Mol. Biol. 194:531-544.
    • (1987) J. Mol. Biol. , vol.194 , pp. 531-544
    • Vijay-Kumar, S.1    Bugg, C.E.2    Cook, W.J.3
  • 20
    • 0028074974 scopus 로고
    • Protein-protein recognition: Crystal structural analysis of a barnase- barstar complex at 2.0-Å resolution
    • DOI 10.1021/bi00196a004
    • Buckle, A. M., G. Schreiber, and A. R. Fersht. 1994. Protein-protein recognition: crystal structural analysis of a barnase-barstar complex at 2.0-Å resolution. Biochemistry. 33:8878-8889. (Pubitemid 24257995)
    • (1994) Biochemistry , vol.33 , Issue.30 , pp. 8878-8889
    • Buckle, A.M.1    Schreiber, G.2    Fersht, A.R.3
  • 21
    • 24944542708 scopus 로고    scopus 로고
    • Statistical coil model of the unfolded state: Resolving the reconciliation problem
    • Jha, A. K., A. Colubri, T. R. Sosnick. 2005. Statistical coil model of the unfolded state: resolving the reconciliation problem. Proc. Natl. Acad. Sci. USA. 102:13099-13104.
    • (2005) Proc. Natl. Acad. Sci. USA , vol.102 , pp. 13099-13104
    • Jha, A.K.1    Colubri, A.2    Sosnick, T.R.3
  • 22
    • 33746592161 scopus 로고    scopus 로고
    • Molecular simulations of cotranslational protein folding: Fragment stabilities, folding cooperativity, and trapping in the ribosome
    • Elcock, A. H. 2006. Molecular simulations of cotranslational protein folding: fragment stabilities, folding cooperativity, and trapping in the ribosome. PLOS Comput. Biol. 2: e98.
    • (2006) PLOS Comput. Biol. , vol.2
    • Elcock, A.H.1
  • 23
    • 0347753598 scopus 로고    scopus 로고
    • Energetics of protein thermodynamic cooperativity: Contributions of local and nonlocal interactions
    • Knott, M., H. Kaya, and H. S. Chan. 2004. Energetics of protein thermodynamic cooperativity: contributions of local and nonlocal interactions. Polymer (Guildf.). 45:623-632.
    • (2004) Polymer. (Guildf.) , vol.45 , pp. 623-632
    • Knott, M.1    Kaya, H.2    Chan, H.S.3
  • 24
    • 33750652614 scopus 로고
    • Brownian dynamics with hydrodynamic interactions
    • Ermak, D. L., and J. A. McCammon. 1978. Brownian dynamics with hydrodynamic interactions. J. Chem. Phys. 69:1352-1360.
    • (1978) J. Chem. Phys. , vol.69 , pp. 1352-1360
    • Ermak, D.L.1    McCammon, J.A.2
  • 25
    • 65249094240 scopus 로고    scopus 로고
    • Striking effects of hydrodynamic interactions on the simulated diffusion and folding of proteins
    • Frembgen-Kesner, T., and A. H. Elcock. 2009. Striking effects of hydrodynamic interactions on the simulated diffusion and folding of proteins. J. Chem. Theory Comput. 5:242-256.
    • (2009) J. Chem. Theory Comput. , vol.5 , pp. 242-256
    • Frembgen-Kesner, T.1    Elcock, A.H.2
  • 26
    • 0000388705 scopus 로고    scopus 로고
    • LINCS: A linear constraint solver for molecular simulations
    • Hess, B., H. Bekker, J. G. E. M. Fraaije. 1997. LINCS: a linear constraint solver for molecular simulations. J. Comput. Chem. 18:1463-1472.
    • (1997) J. Comput. Chem. , vol.18 , pp. 1463-1472
    • Hess, B.1    Bekker, H.2    Fraaije, J.G.E.M.3
  • 27
    • 0034685604 scopus 로고    scopus 로고
    • Topological and energetic factors: What determines the structural details of the transition state ensemble and "en-route" intermediates for protein folding? An investigation for small globular proteins
    • Clementi, C., H. Nymeyer, and J. N. Onuchic. 2000. Topological and energetic factors: what determines the structural details of the transition state ensemble and "en-route" intermediates for protein folding? An investigation for small globular proteins. J. Mol. Biol. 298:937-953.
    • (2000) J. Mol. Biol. , vol.298 , pp. 937-953
    • Clementi, C.1    Nymeyer, H.2    Onuchic, J.N.3
  • 28
    • 0035850732 scopus 로고    scopus 로고
    • Roles of native topology and chainlength scaling in protein folding: A simulation study with a Go-like model
    • Koga, N., and S. Takada. 2001. Roles of native topology and chainlength scaling in protein folding: a simulation study with a Go-like model. J. Mol. Biol. 313:171-180.
    • (2001) J. Mol. Biol. , vol.313 , pp. 171-180
    • Koga, N.1    Takada, S.2
  • 29
    • 4644301408 scopus 로고    scopus 로고
    • Domain swapping is a consequence of minimal frustration
    • Yang, S., S. S. Cho, J. N. Onuchic. 2004. Domain swapping is a consequence of minimal frustration. Proc. Natl. Acad. Sci. USA. 101:13786-13791.
    • (2004) Proc. Natl. Acad. Sci. USA , vol.101 , pp. 13786-13791
    • Yang, S.1    Cho, S.S.2    Onuchic, J.N.3
  • 30
    • 33644753038 scopus 로고    scopus 로고
    • Topological determinants of protein domain swapping
    • Ding, F., K. C. Prutzman, N. V. Dokholyan. 2006. Topological determinants of protein domain swapping. Structure. 14:5-14.
    • (2006) Structure , vol.14 , pp. 5-14
    • Ding, F.1    Prutzman, K.C.2    Dokholyan, N.V.3
  • 31
    • 0036923039 scopus 로고    scopus 로고
    • Molecular dynamics simulation of the SH3 domain aggregation suggests a generic amyloidogenesis mechanism
    • Ding, F., N. V. Dokholyan, E. I. Shakhnovich. 2002. Molecular dynamics simulation of the SH3 domain aggregation suggests a generic amyloidogenesis mechanism. J. Mol. Biol. 324:851-857.
    • (2002) J. Mol. Biol. , vol.324 , pp. 851-857
    • Ding, F.1    Dokholyan, N.V.2    Shakhnovich, E.I.3
  • 32
    • 0030992890 scopus 로고    scopus 로고
    • De novo design of the hydrophobic core of ubiquitin
    • Lazar, G. A., J. R. Desjarlais, and T. M. Handel. 1997. De novo design of the hydrophobic core of ubiquitin. Protein Sci. 6:1167-1178.
    • (1997) Protein Sci. , vol.6 , pp. 1167-1178
    • Lazar, G.A.1    Desjarlais, J.R.2    Handel, T.M.3
  • 33
    • 0037686252 scopus 로고    scopus 로고
    • The present view of the mechanism of protein folding
    • Daggett, V., and A. R. Fersht. 2003. The present view of the mechanism of protein folding. Nat. Rev. Mol. Cell Biol. 4:497-502.
    • (2003) Nat. Rev. Mol. Cell. Biol. , vol.4 , pp. 497-502
    • Daggett, V.1    Fersht, A.R.2
  • 34
    • 0025093185 scopus 로고
    • Estimating the contribution of engineered surface electrostatic interactions to protein stability by using double-mutant cycles
    • Serrano, L., A. Horovitz, A. R. Fersht. 1990. Estimating the contribution of engineered surface electrostatic interactions to protein stability by using double-mutant cycles. Biochemistry. 29:9343-9352.
    • (1990) Biochemistry , vol.29 , pp. 9343-9352
    • Serrano, L.1    Horovitz, A.2    Fersht, A.R.3
  • 35
    • 0034804243 scopus 로고    scopus 로고
    • Single-chain versus dimeric protein folding: Thermodynamic and kinetic consequences of covalent linkage
    • Zhou, H.-X. 2001. Single-chain versus dimeric protein folding: thermodynamic and kinetic consequences of covalent linkage. J. Am. Chem. Soc. 123:6730-6731.
    • (2001) J. Am. Chem. Soc. , vol.123 , pp. 6730-6731
    • Zhou, H.-X.1
  • 36
    • 70349386569 scopus 로고    scopus 로고
    • Direct observation of tug-of-war during the folding of a mutually exclusive protein
    • Peng, Q., and H. Li. 2009. Direct observation of tug-of-war during the folding of a mutually exclusive protein. J. Am. Chem. Soc. 131:13347-13354.
    • (2009) J. Am. Chem. Soc. , vol.131 , pp. 13347-13354
    • Peng, Q.1    Li, H.2
  • 37
    • 0031576337 scopus 로고    scopus 로고
    • Glutamine, alanine or glycine repeats inserted into the loop of a protein have minimal effects on stability and folding rates
    • Ladurner, A. G., and A. R. Fersht. 1997. Glutamine, alanine or glycine repeats inserted into the loop of a protein have minimal effects on stability and folding rates. J. Mol. Biol. 273:330-337.
    • (1997) J. Mol. Biol. , vol.273 , pp. 330-337
    • Ladurner, A.G.1    Fersht, A.R.2
  • 38
    • 0033548061 scopus 로고    scopus 로고
    • Using loop length variants to dissect the folding pathway of a four-helix-bundle protein
    • Nagi, A. D., K. S. Anderson, and L. Regan. 1999. Using loop length variants to dissect the folding pathway of a four-helix-bundle protein. J. Mol. Biol. 286:257-265.
    • (1999) J. Mol. Biol. , vol.286 , pp. 257-265
    • Nagi, A.D.1    Anderson, K.S.2    Regan, L.3
  • 39
    • 0030663205 scopus 로고    scopus 로고
    • Loop length, intramolecular diffusion and protein folding
    • Viguera, A.-R., and L. Serrano. 1997. Loop length, intramolecular diffusion and protein folding. Nat. Struct. Biol. 4:939-946.
    • (1997) Nat. Struct. Biol. , vol.4 , pp. 939-946
    • Viguera, A.-R.1    Serrano, L.2
  • 40
    • 0027318108 scopus 로고
    • Directed mutagenesis and barnase-barstar recognition
    • Hartley, R. W. 1993. Directed mutagenesis and barnase-barstar recognition. Biochemistry. 32:5978-5984.
    • (1993) Biochemistry , vol.32 , pp. 5978-5984
    • Hartley, R.W.1
  • 41
    • 0027177102 scopus 로고
    • Interaction of barnase with its polypeptide inhibitor barstar studied by protein engineering
    • Schreiber, G., and A. R. Fersht. 1993. Interaction of barnase with its polypeptide inhibitor barstar studied by protein engineering. Biochemistry. 32:5145-5150.
    • (1993) Biochemistry , vol.32 , pp. 5145-5150
    • Schreiber, G.1    Fersht, A.R.2
  • 42
    • 0027424466 scopus 로고
    • Identification of the barstar binding site of barnase by NMR spectroscopy and hydrogen-deuterium exchange
    • Jones, D. N. M., M. Bycroft, A. R. Fersht. 1993. Identification of the barstar binding site of barnase by NMR spectroscopy and hydrogen-deuterium exchange. FEBS Lett. 331:165-172.
    • (1993) FEBS Lett. , vol.331 , pp. 165-172
    • Jones, D.N.M.1    Bycroft, M.2    Fersht, A.R.3
  • 43
    • 65249094239 scopus 로고    scopus 로고
    • Structural and thermodynamic analysis of a conformationally strained circular permutant of barnase
    • Butler, J. S., D. M. Mitrea, S. N. Loh. 2009. Structural and thermodynamic analysis of a conformationally strained circular permutant of barnase. Biochemistry. 48:3497-3507.
    • (2009) Biochemistry , vol.48 , pp. 3497-3507
    • Butler, J.S.1    Mitrea, D.M.2    Loh, S.N.3
  • 44
    • 70349629975 scopus 로고    scopus 로고
    • Protein unfolding with a steric trap
    • Blois, T. M., H. Hong, J. U. Bowie. 2009. Protein unfolding with a steric trap. J. Am. Chem. Soc. 131:13914-13915.
    • (2009) J. Am. Chem. Soc. , vol.131 , pp. 13914-13915
    • Blois, T.M.1    Hong, H.2    Bowie, J.U.3
  • 45
    • 34249821932 scopus 로고    scopus 로고
    • Backbone building from quadrilaterals: A fast and accurate algorithm for protein backbone reconstruction from alpha carbon coordinates
    • Gront, D., S. Kmiecik, and A. Kolinski. 2007. Backbone building from quadrilaterals: a fast and accurate algorithm for protein backbone reconstruction from alpha carbon coordinates. J. Comput. Chem. 28:1593-1597.
    • (2007) J. Comput. Chem. , vol.28 , pp. 1593-1597
    • Gront, D.1    Kmiecik, S.2    Kolinski, A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.