메뉴 건너뛰기




Volumn 25, Issue 2, 2011, Pages 168-182

Extended fuzzy function model with stable learning methods for online system identification

Author keywords

adaptive learning rate; extended fuzzy function model; input to state stability; online system identification

Indexed keywords

ACCURATE MODELING; ADAPTIVE LEARNING RATES; ASYMPTOTIC CONVERGENCE; BOUNDEDNESS; BOX-JENKINS; COMPUTATIONALLY EFFICIENT; EXTENDED FUZZY FUNCTION MODEL; FURNACE SYSTEMS; FUZZY FUNCTION; GRADIENT-DESCENT; INPUT-OUTPUT BEHAVIOR; INPUT-TO-STATE STABILITY; LEARNING METHODS; MODELING ERRORS; NON-LINEAR DYNAMIC SYSTEMS; NON-LINEAR MODEL; NON-LINEAR SYSTEM IDENTIFICATION; NONLINEAR DISCRETE-TIME SYSTEMS; NUMERICAL SIMULATION; OFF-LINE MODELING; ON-LINE IDENTIFICATION; ONLINE SYSTEM IDENTIFICATION; PRIOR KNOWLEDGE; RECURSIVE LEAST SQUARES; SYSTEM IDENTIFICATIONS;

EID: 79251602005     PISSN: 08906327     EISSN: 10991115     Source Type: Journal    
DOI: 10.1002/acs.1214     Document Type: Article
Times cited : (13)

References (33)
  • 3
    • 0026928374 scopus 로고
    • Fuzzy basis functions, universal approximation, and orthogonal least squares learning
    • Wang L-X, Mendel JM,. Fuzzy basis functions, universal approximation, and orthogonal least squares learning. IEEE Transactions on Neural Networks 1992; 5 (3): 807-814.
    • (1992) IEEE Transactions on Neural Networks , vol.5 , Issue.3 , pp. 807-814
    • Wang, L.-X.1    Mendel, J.M.2
  • 4
    • 40649126925 scopus 로고    scopus 로고
    • Fuzzy functions with LSE
    • Türken IB,. Fuzzy functions with LSE. Applied Soft Computing 2008; 8: 1178-1188.
    • (2008) Applied Soft Computing , vol.8 , pp. 1178-1188
    • Türken, I.B.1
  • 7
    • 56649124794 scopus 로고    scopus 로고
    • Increasing accuracy of two class pattern recognition with improved fuzzy functions
    • Asli C, Turksen IB,. Increasing accuracy of two class pattern recognition with improved fuzzy functions. Expert Systems with Applications 2009; 36: 1337-1354.
    • (2009) Expert Systems with Applications , vol.36 , pp. 1337-1354
    • Asli, C.1    Turksen, I.B.2
  • 8
  • 10
    • 70649103874 scopus 로고    scopus 로고
    • Fuzzy functions based ARX model and new fuzzy basis function models for nonlinear system identification
    • Beyhan S, Alci M,. Fuzzy functions based ARX model and new fuzzy basis function models for nonlinear system identification. Applied Soft Computing 2010; 10: 439-444.
    • (2010) Applied Soft Computing , vol.10 , pp. 439-444
    • Beyhan, S.1    Alci, M.2
  • 11
    • 0030108041 scopus 로고    scopus 로고
    • Multilayer neural-net robot controller with guaranteed tracking performance
    • Lewis FL, Yeildirek A, Liu K,. Multilayer neural-net robot controller with guaranteed tracking performance. IEEE Transactions on Neural Networks 1996; 7 (2): 388-399.
    • (1996) IEEE Transactions on Neural Networks , vol.7 , Issue.2 , pp. 388-399
    • Lewis, F.L.1    Yeildirek, A.2    Liu, K.3
  • 12
    • 33747045870 scopus 로고    scopus 로고
    • Generalized predictive control based on self-recurrent wavelet neural network for stable path tracking of mobile robots: Adaptive learning rates approach
    • Yoo SJ, Choi YH, Park JB,. Generalized predictive control based on self-recurrent wavelet neural network for stable path tracking of mobile robots: adaptive learning rates approach. IEEE Transactions on Circuits and Systems-I: Regular Papers 2006; 53 (6): 1381-1394.
    • (2006) IEEE Transactions on Circuits and Systems-I: Regular Papers , vol.53 , Issue.6 , pp. 1381-1394
    • Yoo, S.J.1    Choi, Y.H.2    Park, J.B.3
  • 14
    • 70649105495 scopus 로고    scopus 로고
    • Nonlinear discrete-time controller with unknown systems identification based on fuzzy rules emulated network
    • Treesatayapun C,. Nonlinear discrete-time controller with unknown systems identification based on fuzzy rules emulated network. Applied Soft Computing 2010; 10: 390-397.
    • (2010) Applied Soft Computing , vol.10 , pp. 390-397
    • Treesatayapun, C.1
  • 15
    • 33750119752 scopus 로고    scopus 로고
    • On adaptive learning rate that guarantees convergence in feedforward networks
    • Laxmidhar B, Swagat K, Awhan P,. On adaptive learning rate that guarantees convergence in feedforward networks. IEEE Transactions on Neural Networks 2006; 17 (5): 1116-1125.
    • (2006) IEEE Transactions on Neural Networks , vol.17 , Issue.5 , pp. 1116-1125
    • Laxmidhar, B.1    Swagat, K.2    Awhan, P.3
  • 16
    • 58849129653 scopus 로고    scopus 로고
    • Identification using ANFIS with intelligent hybrid stable learning algorithm approaches and stability analysis of training methods
    • Shoorehdeli MA, Teshnehlab M, Sedigh AKi, Khanesar MA,. Identification using ANFIS with intelligent hybrid stable learning algorithm approaches and stability analysis of training methods. Applied Soft Computing 2009; 9: 833-850.
    • (2009) Applied Soft Computing , vol.9 , pp. 833-850
    • Shoorehdeli, M.A.1    Teshnehlab, M.2    Sedigh, A.3    Khanesar, M.A.4
  • 17
    • 60249098048 scopus 로고    scopus 로고
    • On-line fuzzy modeling with structure and parameter learning
    • Yu W, Li X,. On-line fuzzy modeling with structure and parameter learning. Expert Systems with Applications 2009; 36: 7484-7492.
    • (2009) Expert Systems with Applications , vol.36 , pp. 7484-7492
    • Yu, W.1    Li, X.2
  • 19
    • 77957910156 scopus 로고    scopus 로고
    • Stable modeling based control methods using a new RBF network
    • DOI: 10.1016/j.isatra.2010.04.005.
    • Beyhan S, Alci M,. Stable modeling based control methods using a new RBF network. ISA Transactions 2010. DOI: 10.1016/j.isatra.2010.04.005.
    • (2010) ISA Transactions
    • Beyhan, S.1    Alci, M.2
  • 20
  • 21
    • 0035359807 scopus 로고    scopus 로고
    • Dynamic optimal learning rates of a certain class of fuzzy neural networks and its applications with genetic algorithm
    • Wang CH, Liu HL, Lin CT,. Dynamic optimal learning rates of a certain class of fuzzy neural networks and its applications with genetic algorithm. IEEE Transactions on Systems, Man, CyberneticsPart B 2001; 31: 467-475.
    • (2001) IEEE Transactions on Systems, Man, CyberneticsPart B , vol.31 , pp. 467-475
    • Wang, C.H.1    Liu, H.L.2    Lin, C.T.3
  • 22
    • 33750961042 scopus 로고    scopus 로고
    • On-line system identification of complex systems using Chebyshev neural networks
    • Purwar S, Kar IN, Jha AN,. On-line system identification of complex systems using Chebyshev neural networks. Applied Soft Computing 2007; 7: 364-372.
    • (2007) Applied Soft Computing , vol.7 , pp. 364-372
    • Purwar, S.1    Kar, I.N.2    Jha, A.N.3
  • 23
    • 0036888758 scopus 로고    scopus 로고
    • Training fuzzy systems with the extended Kalman filter
    • Simon D,. Training fuzzy systems with the extended Kalman filter. Fuzzy Sets and Systems 2002; 132: 189-199.
    • (2002) Fuzzy Sets and Systems , vol.132 , pp. 189-199
    • Simon, D.1
  • 24
    • 33845930321 scopus 로고    scopus 로고
    • The adaptive learning rates of extended Kalman filter based training algorithm for wavelet neural networks
    • LNAI 4293
    • Kim KJ, Park JB, Choi YH,. The adaptive learning rates of extended Kalman filter based training algorithm for wavelet neural networks. MICAI 2006, LNAI 4293, 2006; 327-337.
    • (2006) MICAI 2006 , pp. 327-337
    • Kim, K.J.1    Park, J.B.2    Choi, Y.H.3
  • 25
    • 0032166717 scopus 로고    scopus 로고
    • A result on exponential tracking error convergence and persistent excitation
    • Bayard DS, Spanos J, Rahman Z,. A result on exponential tracking error convergence and persistent excitation. IEEE Transactions on Automatic Control 1998; 43 (9): 1334-1338.
    • (1998) IEEE Transactions on Automatic Control , vol.43 , Issue.9 , pp. 1334-1338
    • Bayard, D.S.1    Spanos, J.2    Rahman, Z.3
  • 27
    • 46749118321 scopus 로고    scopus 로고
    • Nonlinear system identification using Wiener type Laguerrewavelet network model
    • Aadaleesan P, Miglan N, Sharma R, Saha P,. Nonlinear system identification using Wiener type Laguerrewavelet network model. Chemical Engineering Science 2008; 63: 3932-3941.
    • (2008) Chemical Engineering Science , vol.63 , pp. 3932-3941
    • Aadaleesan, P.1    Miglan, N.2    Sharma, R.3    Saha, P.4
  • 28
    • 73649091761 scopus 로고    scopus 로고
    • Selective recursive kernel learning for on-line identification of nonlinear systems with NARX form
    • Liu Y, Wang H, Yu c J, Li P,. Selective recursive kernel learning for on-line identification of nonlinear systems with NARX form. Journal of Process Control 2010; 20: 181-194.
    • (2010) Journal of Process Control , vol.20 , pp. 181-194
    • Liu, Y.1    Wang, H.2    Yu, C.J.3    Li, P.4
  • 31
    • 33947209499 scopus 로고    scopus 로고
    • A new recurrent neurofuzzy network for identification of dynamic systems
    • Gonzalez-Olvera MA, Tang Y,. A new recurrent neurofuzzy network for identification of dynamic systems. Fuzzy Sets and Systems 2007; 158: 1023-1035.
    • (2007) Fuzzy Sets and Systems , vol.158 , pp. 1023-1035
    • Gonzalez-Olvera, M.A.1    Tang, Y.2
  • 33
    • 0036531230 scopus 로고    scopus 로고
    • A TSK-type recurrent fuzzy network for dynamic systems processing by neural network and genetic algorithms
    • Juang C-F,. A TSK-type recurrent fuzzy network for dynamic systems processing by neural network and genetic algorithms. IEEE Transactions on Fuzzy Systems 2002; 10 (2): 155-170.
    • (2002) IEEE Transactions on Fuzzy Systems , vol.10 , Issue.2 , pp. 155-170
    • Juang, C.-F.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.