메뉴 건너뛰기




Volumn 22, Issue 5, 2008, Pages 647-660

Multi-scale support vector algorithms for hot spot detection and modelling

Author keywords

Kernel methods; Machine learning; Multi scale environmental modelling; Spatial mapping; Support vector regression

Indexed keywords

(PL) PROPERTIES; ALGORITHMIC APPROACH; DATA DRIVEN (DD); DATA MODELLING; DIFFERENT SCALES; EARLY WARNING SYSTEM (EWS); ENVIRONMENTAL DATA; ENVIRONMENTAL PROCESSES; HOT SPOT DETECTION; JOINT INFLUENCE; LARGE-SCALE MODELLING; MACHINE-LEARNING; MULTI SCALING; PREDICTIVE ABILITIES; PRIOR KNOWLEDGE; REAL-TIME MAPPING; SPATIAL DATA; SPATIAL SCALING; SUPPORT VECTOR ALGORITHMS; SUPPORT VECTOR REGRESSION (SVR);

EID: 45749110247     PISSN: 14363240     EISSN: None     Source Type: Journal    
DOI: 10.1007/s00477-007-0162-x     Document Type: Article
Times cited : (26)

References (42)
  • 1
    • 5844297152 scopus 로고
    • Theory of reproducing kernels
    • Aronszajn N (1950) Theory of reproducing kernels. Trans Am Math Soc 68:337-404
    • (1950) Trans Am Math Soc , vol.68 , pp. 337-404
    • Aronszajn, N.1
  • 2
    • 33645989110 scopus 로고    scopus 로고
    • Machine learning in soil classification
    • Bhattacharya B, Solomatine D (2006) Machine learning in soil classification. Neural Netw 19(2):186-195
    • (2006) Neural Netw , vol.19 , Issue.2 , pp. 186-195
    • Bhattacharya, B.1    Solomatine, D.2
  • 5
    • 0000245743 scopus 로고    scopus 로고
    • Statistical modeling: The two cultures
    • Breiman L (2001) Statistical modeling: The two cultures. Stat Sci 16(3):199-231
    • (2001) Stat Sci , vol.16 , Issue.3 , pp. 199-231
    • Breiman, L.1
  • 6
    • 30844446670 scopus 로고    scopus 로고
    • Spatial prediction models for landslide hazards: Review, comparison and evaluation
    • Brenning A (2005) Spatial prediction models for landslide hazards: review, comparison and evaluation. Nat Hazards Earth Syst Sci 5:853-862
    • (2005) Nat Hazards Earth Syst Sci , vol.5 , pp. 853-862
    • Brenning, A.1
  • 7
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • Burges C (1998) A tutorial on support vector machines for pattern recognition. Data Min Knowl Discov 2(2):121-167
    • (1998) Data Min Knowl Discov , vol.2 , Issue.2 , pp. 121-167
    • Burges, C.1
  • 9
    • 33645962788 scopus 로고    scopus 로고
    • Introduction to special issue: Earth sciences and environmental applications of computational intelligence
    • Cherkassky V, Krasnopolsky M, Solomatine D, Valdés J (2006) Introduction to special issue: Earth sciences and environmental applications of computational intelligence. Neural Netw 19(2):111
    • (2006) Neural Netw , vol.19 , Issue.2 , pp. 111
    • Cherkassky, V.1    Krasnopolsky, M.2    Solomatine, D.3    Valdés, J.4
  • 15
    • 34249753618 scopus 로고
    • Support vector networks
    • Cortes C, Vapnik V (1995), support vector networks. Mach Learn 20:273-297
    • (1995) Mach Learn , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 18
    • 0003157339 scopus 로고
    • Robust estimation of location parameter
    • Huber P (1964) Robust estimation of location parameter. Ann Math Stat 35(1)
    • (1964) Ann Math Stat , vol.35 , Issue.1
    • Huber, P.1
  • 22
    • 7544244828 scopus 로고    scopus 로고
    • Advanced spatial data analysis and modelling with support vector machines
    • Kanevski M, Pozdnoukhov A, Canu S, Maignan M (2002a) Advanced spatial data analysis and modelling with support vector machines. Int J Fuzzy Syst 4(1):606-616
    • (2002) Int J Fuzzy Syst , vol.4 , Issue.1 , pp. 606-616
    • Kanevski, M.1    Pozdnoukhov, A.2    Canu, S.3    Maignan, M.4
  • 25
    • 0242288813 scopus 로고    scopus 로고
    • The support vector machine under test
    • Meyer D, Leisch F, Hornik K (2003) The support vector machine under test. Neurocomputing, 55:169-186
    • (2003) Neurocomputing , vol.55 , pp. 169-186
    • Meyer, D.1    Leisch, F.2    Hornik, K.3
  • 26
    • 85153950631 scopus 로고
    • Learning local error bars for non-linear regression
    • In:
    • Nix DA, Weigend AS (1995) Learning local error bars for non-linear regression. In: Proceedings of NIPS 7, pp 489-496
    • (1995) Proceedings of NIPS 7 , pp. 489-496
    • Nix, D.A.1    Weigend, A.S.2
  • 27
    • 33947537723 scopus 로고    scopus 로고
    • A recurrent support vector regression model in rainfall forecasting
    • Pai P-F, Hong W-C (2007) A recurrent support vector regression model in rainfall forecasting. Hydrol Process 21(6):819-827
    • (2007) Hydrol Process , vol.21 , Issue.6 , pp. 819-827
    • Pai, P.-F.1    Hong, W.-C.2
  • 28
    • 45749154369 scopus 로고    scopus 로고
    • Support vector regression for automated robust spatial mapping of natural radioactivity
    • Pozdnoukhov A (2005) Support vector regression for automated robust spatial mapping of natural radioactivity. Applied GIS 1(2):21-01-21-10
    • (2005) Applied GIS , vol.1 , Issue.2
    • Pozdnoukhov, A.1
  • 29
    • 33845396761 scopus 로고    scopus 로고
    • Monitoring network optimisation for spatial data classification using support vector machines
    • Pozdnoukhov A, Kanevski M (2006) Monitoring network optimisation for spatial data classification using support vector machines. Int J of Environ Pollut 28(3/4):465-484
    • (2006) Int J of Environ Pollut , vol.28 , Issue.3-4 , pp. 465-484
    • Pozdnoukhov, A.1    Kanevski, M.2
  • 30
    • 45749136166 scopus 로고    scopus 로고
    • Avalanche danger forecasting with machine learning methods
    • EGU
    • Pozdnoukhov A, Kanevski M, Purves RS (2007) Avalanche danger forecasting with machine learning methods. Geophys Res Abstr 9:01917, EGU
    • (2007) Geophys Res Abstr , vol.9 , pp. 01917
    • Pozdnoukhov, A.1    Kanevski, M.2    Purves, R.S.3
  • 33
    • 4043137356 scopus 로고    scopus 로고
    • A tutorial on support vector regression
    • Smola A, Scholkopf B (2004) A tutorial on support vector regression. Stat Comput 14:199-222
    • (2004) Stat Comput , vol.14 , pp. 199-222
    • Smola, A.1    Scholkopf, B.2
  • 35
    • 0026254768 scopus 로고
    • A generalized regression neural network
    • Specht DF (1991) A generalized regression neural network. IEEE Trans Neural Netw 2:568-576
    • (1991) IEEE Trans Neural Netw , vol.2 , pp. 568-576
    • Specht, D.F.1
  • 36
    • 33745776113 scopus 로고    scopus 로고
    • Large scale multiple kernel learning
    • In: Bennett K, Hernandez EP (eds)
    • Sonnenburg S, Raetsch G, Schaefer C, Scholkopf B (2006) Large scale multiple kernel learning. In: Bennett K, Hernandez EP (eds) J Mach Learn Res 7:1531-1565
    • (2006) J Mach Learn Res , vol.7 , pp. 1531-1565
    • Sonnenburg, S.1    Raetsch, G.2    Schaefer, C.3    Scholkopf, B.4
  • 38
    • 45749104883 scopus 로고    scopus 로고
    • Spatial prediction of radioactivity using general regression neural network
    • Timonin V, Savelieva E (2005) Spatial prediction of radioactivity using general regression neural network. Appl GIS 1(2):19-01-19-14
    • (2005) Appl GIS , vol.1 , Issue.2
    • Timonin, V.1    Savelieva, E.2
  • 41
    • 10844281405 scopus 로고    scopus 로고
    • Extensions to the support vector method
    • PhD Thesis, Royal Holloway University of London
    • Weston J (1999) Extensions to the support vector method. PhD Thesis, Royal Holloway University of London
    • (1999)
    • Weston, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.